##// END OF EJS Templates
worker: use one pipe per posix worker and select() in parent process...
worker: use one pipe per posix worker and select() in parent process This allows us to pass results larger than PIPE_BUF through the pipes without interleaving them. This is necessary now because "hg fix" sends file contents as the result from workers. Differential Revision: https://phab.mercurial-scm.org/D3960

File last commit:

r38324:1445b556 merge default
r38752:9e6afe7f default
Show More
revlog.c
2182 lines | 49.1 KiB | text/x-c | CLexer
/*
parsers.c - efficient content parsing
Copyright 2008 Matt Mackall <mpm@selenic.com> and others
This software may be used and distributed according to the terms of
the GNU General Public License, incorporated herein by reference.
*/
#include <Python.h>
#include <assert.h>
#include <ctype.h>
#include <stddef.h>
#include <string.h>
#include "bitmanipulation.h"
#include "charencode.h"
#include "util.h"
#ifdef IS_PY3K
/* The mapping of Python types is meant to be temporary to get Python
* 3 to compile. We should remove this once Python 3 support is fully
* supported and proper types are used in the extensions themselves. */
#define PyInt_Check PyLong_Check
#define PyInt_FromLong PyLong_FromLong
#define PyInt_FromSsize_t PyLong_FromSsize_t
#define PyInt_AS_LONG PyLong_AS_LONG
#define PyInt_AsLong PyLong_AsLong
#endif
/*
* A base-16 trie for fast node->rev mapping.
*
* Positive value is index of the next node in the trie
* Negative value is a leaf: -(rev + 1)
* Zero is empty
*/
typedef struct {
int children[16];
} nodetree;
/*
* This class has two behaviors.
*
* When used in a list-like way (with integer keys), we decode an
* entry in a RevlogNG index file on demand. Our last entry is a
* sentinel, always a nullid. We have limited support for
* integer-keyed insert and delete, only at elements right before the
* sentinel.
*
* With string keys, we lazily perform a reverse mapping from node to
* rev, using a base-16 trie.
*/
typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */
PyObject *data; /* raw bytes of index */
Py_buffer buf; /* buffer of data */
PyObject **cache; /* cached tuples */
const char **offsets; /* populated on demand */
Py_ssize_t raw_length; /* original number of elements */
Py_ssize_t length; /* current number of elements */
PyObject *added; /* populated on demand */
PyObject *headrevs; /* cache, invalidated on changes */
PyObject *filteredrevs;/* filtered revs set */
nodetree *nt; /* base-16 trie */
unsigned ntlength; /* # nodes in use */
unsigned ntcapacity; /* # nodes allocated */
int ntdepth; /* maximum depth of tree */
int ntsplits; /* # splits performed */
int ntrev; /* last rev scanned */
int ntlookups; /* # lookups */
int ntmisses; /* # lookups that miss the cache */
int inlined;
} indexObject;
static Py_ssize_t index_length(const indexObject *self)
{
if (self->added == NULL)
return self->length;
return self->length + PyList_GET_SIZE(self->added);
}
static PyObject *nullentry;
static const char nullid[20];
static Py_ssize_t inline_scan(indexObject *self, const char **offsets);
#if LONG_MAX == 0x7fffffffL
static const char *const tuple_format = PY23("Kiiiiiis#", "Kiiiiiiy#");
#else
static const char *const tuple_format = PY23("kiiiiiis#", "kiiiiiiy#");
#endif
/* A RevlogNG v1 index entry is 64 bytes long. */
static const long v1_hdrsize = 64;
/*
* Return a pointer to the beginning of a RevlogNG record.
*/
static const char *index_deref(indexObject *self, Py_ssize_t pos)
{
if (self->inlined && pos > 0) {
if (self->offsets == NULL) {
self->offsets = PyMem_Malloc(self->raw_length *
sizeof(*self->offsets));
if (self->offsets == NULL)
return (const char *)PyErr_NoMemory();
inline_scan(self, self->offsets);
}
return self->offsets[pos];
}
return (const char *)(self->buf.buf) + pos * v1_hdrsize;
}
static inline int index_get_parents(indexObject *self, Py_ssize_t rev,
int *ps, int maxrev)
{
if (rev >= self->length - 1) {
PyObject *tuple = PyList_GET_ITEM(self->added,
rev - self->length + 1);
ps[0] = (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 5));
ps[1] = (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 6));
} else {
const char *data = index_deref(self, rev);
ps[0] = getbe32(data + 24);
ps[1] = getbe32(data + 28);
}
/* If index file is corrupted, ps[] may point to invalid revisions. So
* there is a risk of buffer overflow to trust them unconditionally. */
if (ps[0] > maxrev || ps[1] > maxrev) {
PyErr_SetString(PyExc_ValueError, "parent out of range");
return -1;
}
return 0;
}
/*
* RevlogNG format (all in big endian, data may be inlined):
* 6 bytes: offset
* 2 bytes: flags
* 4 bytes: compressed length
* 4 bytes: uncompressed length
* 4 bytes: base revision
* 4 bytes: link revision
* 4 bytes: parent 1 revision
* 4 bytes: parent 2 revision
* 32 bytes: nodeid (only 20 bytes used)
*/
static PyObject *index_get(indexObject *self, Py_ssize_t pos)
{
uint64_t offset_flags;
int comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2;
const char *c_node_id;
const char *data;
Py_ssize_t length = index_length(self);
PyObject *entry;
if (pos < 0)
pos += length;
if (pos < 0 || pos >= length) {
PyErr_SetString(PyExc_IndexError, "revlog index out of range");
return NULL;
}
if (pos == length - 1) {
Py_INCREF(nullentry);
return nullentry;
}
if (pos >= self->length - 1) {
PyObject *obj;
obj = PyList_GET_ITEM(self->added, pos - self->length + 1);
Py_INCREF(obj);
return obj;
}
if (self->cache) {
if (self->cache[pos]) {
Py_INCREF(self->cache[pos]);
return self->cache[pos];
}
} else {
self->cache = calloc(self->raw_length, sizeof(PyObject *));
if (self->cache == NULL)
return PyErr_NoMemory();
}
data = index_deref(self, pos);
if (data == NULL)
return NULL;
offset_flags = getbe32(data + 4);
if (pos == 0) /* mask out version number for the first entry */
offset_flags &= 0xFFFF;
else {
uint32_t offset_high = getbe32(data);
offset_flags |= ((uint64_t)offset_high) << 32;
}
comp_len = getbe32(data + 8);
uncomp_len = getbe32(data + 12);
base_rev = getbe32(data + 16);
link_rev = getbe32(data + 20);
parent_1 = getbe32(data + 24);
parent_2 = getbe32(data + 28);
c_node_id = data + 32;
entry = Py_BuildValue(tuple_format, offset_flags, comp_len,
uncomp_len, base_rev, link_rev,
parent_1, parent_2, c_node_id, 20);
if (entry) {
PyObject_GC_UnTrack(entry);
Py_INCREF(entry);
}
self->cache[pos] = entry;
return entry;
}
/*
* Return the 20-byte SHA of the node corresponding to the given rev.
*/
static const char *index_node(indexObject *self, Py_ssize_t pos)
{
Py_ssize_t length = index_length(self);
const char *data;
if (pos == length - 1 || pos == INT_MAX)
return nullid;
if (pos >= length)
return NULL;
if (pos >= self->length - 1) {
PyObject *tuple, *str;
tuple = PyList_GET_ITEM(self->added, pos - self->length + 1);
str = PyTuple_GetItem(tuple, 7);
return str ? PyBytes_AS_STRING(str) : NULL;
}
data = index_deref(self, pos);
return data ? data + 32 : NULL;
}
/*
* Return the 20-byte SHA of the node corresponding to the given rev. The
* rev is assumed to be existing. If not, an exception is set.
*/
static const char *index_node_existing(indexObject *self, Py_ssize_t pos)
{
const char *node = index_node(self, pos);
if (node == NULL) {
PyErr_Format(PyExc_IndexError, "could not access rev %d",
(int)pos);
}
return node;
}
static int nt_insert(indexObject *self, const char *node, int rev);
static int node_check(PyObject *obj, char **node, Py_ssize_t *nodelen)
{
if (PyBytes_AsStringAndSize(obj, node, nodelen) == -1)
return -1;
if (*nodelen == 20)
return 0;
PyErr_SetString(PyExc_ValueError, "20-byte hash required");
return -1;
}
static PyObject *index_insert(indexObject *self, PyObject *args)
{
PyObject *obj;
char *node;
int index;
Py_ssize_t len, nodelen;
if (!PyArg_ParseTuple(args, "iO", &index, &obj))
return NULL;
if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 8) {
PyErr_SetString(PyExc_TypeError, "8-tuple required");
return NULL;
}
if (node_check(PyTuple_GET_ITEM(obj, 7), &node, &nodelen) == -1)
return NULL;
len = index_length(self);
if (index < 0)
index += len;
if (index != len - 1) {
PyErr_SetString(PyExc_IndexError,
"insert only supported at index -1");
return NULL;
}
if (self->added == NULL) {
self->added = PyList_New(0);
if (self->added == NULL)
return NULL;
}
if (PyList_Append(self->added, obj) == -1)
return NULL;
if (self->nt)
nt_insert(self, node, index);
Py_CLEAR(self->headrevs);
Py_RETURN_NONE;
}
static void _index_clearcaches(indexObject *self)
{
if (self->cache) {
Py_ssize_t i;
for (i = 0; i < self->raw_length; i++)
Py_CLEAR(self->cache[i]);
free(self->cache);
self->cache = NULL;
}
if (self->offsets) {
PyMem_Free(self->offsets);
self->offsets = NULL;
}
free(self->nt);
self->nt = NULL;
Py_CLEAR(self->headrevs);
}
static PyObject *index_clearcaches(indexObject *self)
{
_index_clearcaches(self);
self->ntlength = self->ntcapacity = 0;
self->ntdepth = self->ntsplits = 0;
self->ntrev = -1;
self->ntlookups = self->ntmisses = 0;
Py_RETURN_NONE;
}
static PyObject *index_stats(indexObject *self)
{
PyObject *obj = PyDict_New();
PyObject *t = NULL;
if (obj == NULL)
return NULL;
#define istat(__n, __d) \
do { \
t = PyInt_FromSsize_t(self->__n); \
if (!t) \
goto bail; \
if (PyDict_SetItemString(obj, __d, t) == -1) \
goto bail; \
Py_DECREF(t); \
} while (0)
if (self->added) {
Py_ssize_t len = PyList_GET_SIZE(self->added);
t = PyInt_FromSsize_t(len);
if (!t)
goto bail;
if (PyDict_SetItemString(obj, "index entries added", t) == -1)
goto bail;
Py_DECREF(t);
}
if (self->raw_length != self->length - 1)
istat(raw_length, "revs on disk");
istat(length, "revs in memory");
istat(ntcapacity, "node trie capacity");
istat(ntdepth, "node trie depth");
istat(ntlength, "node trie count");
istat(ntlookups, "node trie lookups");
istat(ntmisses, "node trie misses");
istat(ntrev, "node trie last rev scanned");
istat(ntsplits, "node trie splits");
#undef istat
return obj;
bail:
Py_XDECREF(obj);
Py_XDECREF(t);
return NULL;
}
/*
* When we cache a list, we want to be sure the caller can't mutate
* the cached copy.
*/
static PyObject *list_copy(PyObject *list)
{
Py_ssize_t len = PyList_GET_SIZE(list);
PyObject *newlist = PyList_New(len);
Py_ssize_t i;
if (newlist == NULL)
return NULL;
for (i = 0; i < len; i++) {
PyObject *obj = PyList_GET_ITEM(list, i);
Py_INCREF(obj);
PyList_SET_ITEM(newlist, i, obj);
}
return newlist;
}
static int check_filter(PyObject *filter, Py_ssize_t arg)
{
if (filter) {
PyObject *arglist, *result;
int isfiltered;
arglist = Py_BuildValue("(n)", arg);
if (!arglist) {
return -1;
}
result = PyEval_CallObject(filter, arglist);
Py_DECREF(arglist);
if (!result) {
return -1;
}
/* PyObject_IsTrue returns 1 if true, 0 if false, -1 if error,
* same as this function, so we can just return it directly.*/
isfiltered = PyObject_IsTrue(result);
Py_DECREF(result);
return isfiltered;
} else {
return 0;
}
}
static Py_ssize_t add_roots_get_min(indexObject *self, PyObject *list,
Py_ssize_t marker, char *phases)
{
PyObject *iter = NULL;
PyObject *iter_item = NULL;
Py_ssize_t min_idx = index_length(self) + 1;
long iter_item_long;
if (PyList_GET_SIZE(list) != 0) {
iter = PyObject_GetIter(list);
if (iter == NULL)
return -2;
while ((iter_item = PyIter_Next(iter))) {
iter_item_long = PyInt_AS_LONG(iter_item);
Py_DECREF(iter_item);
if (iter_item_long < min_idx)
min_idx = iter_item_long;
phases[iter_item_long] = marker;
}
Py_DECREF(iter);
}
return min_idx;
}
static inline void set_phase_from_parents(char *phases, int parent_1,
int parent_2, Py_ssize_t i)
{
if (parent_1 >= 0 && phases[parent_1] > phases[i])
phases[i] = phases[parent_1];
if (parent_2 >= 0 && phases[parent_2] > phases[i])
phases[i] = phases[parent_2];
}
static PyObject *reachableroots2(indexObject *self, PyObject *args)
{
/* Input */
long minroot;
PyObject *includepatharg = NULL;
int includepath = 0;
/* heads and roots are lists */
PyObject *heads = NULL;
PyObject *roots = NULL;
PyObject *reachable = NULL;
PyObject *val;
Py_ssize_t len = index_length(self) - 1;
long revnum;
Py_ssize_t k;
Py_ssize_t i;
Py_ssize_t l;
int r;
int parents[2];
/* Internal data structure:
* tovisit: array of length len+1 (all revs + nullrev), filled upto lentovisit
* revstates: array of length len+1 (all revs + nullrev) */
int *tovisit = NULL;
long lentovisit = 0;
enum { RS_SEEN = 1, RS_ROOT = 2, RS_REACHABLE = 4 };
char *revstates = NULL;
/* Get arguments */
if (!PyArg_ParseTuple(args, "lO!O!O!", &minroot, &PyList_Type, &heads,
&PyList_Type, &roots,
&PyBool_Type, &includepatharg))
goto bail;
if (includepatharg == Py_True)
includepath = 1;
/* Initialize return set */
reachable = PyList_New(0);
if (reachable == NULL)
goto bail;
/* Initialize internal datastructures */
tovisit = (int *)malloc((len + 1) * sizeof(int));
if (tovisit == NULL) {
PyErr_NoMemory();
goto bail;
}
revstates = (char *)calloc(len + 1, 1);
if (revstates == NULL) {
PyErr_NoMemory();
goto bail;
}
l = PyList_GET_SIZE(roots);
for (i = 0; i < l; i++) {
revnum = PyInt_AsLong(PyList_GET_ITEM(roots, i));
if (revnum == -1 && PyErr_Occurred())
goto bail;
/* If root is out of range, e.g. wdir(), it must be unreachable
* from heads. So we can just ignore it. */
if (revnum + 1 < 0 || revnum + 1 >= len + 1)
continue;
revstates[revnum + 1] |= RS_ROOT;
}
/* Populate tovisit with all the heads */
l = PyList_GET_SIZE(heads);
for (i = 0; i < l; i++) {
revnum = PyInt_AsLong(PyList_GET_ITEM(heads, i));
if (revnum == -1 && PyErr_Occurred())
goto bail;
if (revnum + 1 < 0 || revnum + 1 >= len + 1) {
PyErr_SetString(PyExc_IndexError, "head out of range");
goto bail;
}
if (!(revstates[revnum + 1] & RS_SEEN)) {
tovisit[lentovisit++] = (int)revnum;
revstates[revnum + 1] |= RS_SEEN;
}
}
/* Visit the tovisit list and find the reachable roots */
k = 0;
while (k < lentovisit) {
/* Add the node to reachable if it is a root*/
revnum = tovisit[k++];
if (revstates[revnum + 1] & RS_ROOT) {
revstates[revnum + 1] |= RS_REACHABLE;
val = PyInt_FromLong(revnum);
if (val == NULL)
goto bail;
r = PyList_Append(reachable, val);
Py_DECREF(val);
if (r < 0)
goto bail;
if (includepath == 0)
continue;
}
/* Add its parents to the list of nodes to visit */
if (revnum == -1)
continue;
r = index_get_parents(self, revnum, parents, (int)len - 1);
if (r < 0)
goto bail;
for (i = 0; i < 2; i++) {
if (!(revstates[parents[i] + 1] & RS_SEEN)
&& parents[i] >= minroot) {
tovisit[lentovisit++] = parents[i];
revstates[parents[i] + 1] |= RS_SEEN;
}
}
}
/* Find all the nodes in between the roots we found and the heads
* and add them to the reachable set */
if (includepath == 1) {
long minidx = minroot;
if (minidx < 0)
minidx = 0;
for (i = minidx; i < len; i++) {
if (!(revstates[i + 1] & RS_SEEN))
continue;
r = index_get_parents(self, i, parents, (int)len - 1);
/* Corrupted index file, error is set from
* index_get_parents */
if (r < 0)
goto bail;
if (((revstates[parents[0] + 1] |
revstates[parents[1] + 1]) & RS_REACHABLE)
&& !(revstates[i + 1] & RS_REACHABLE)) {
revstates[i + 1] |= RS_REACHABLE;
val = PyInt_FromLong(i);
if (val == NULL)
goto bail;
r = PyList_Append(reachable, val);
Py_DECREF(val);
if (r < 0)
goto bail;
}
}
}
free(revstates);
free(tovisit);
return reachable;
bail:
Py_XDECREF(reachable);
free(revstates);
free(tovisit);
return NULL;
}
static PyObject *compute_phases_map_sets(indexObject *self, PyObject *args)
{
PyObject *roots = Py_None;
PyObject *ret = NULL;
PyObject *phasessize = NULL;
PyObject *phaseroots = NULL;
PyObject *phaseset = NULL;
PyObject *phasessetlist = NULL;
PyObject *rev = NULL;
Py_ssize_t len = index_length(self) - 1;
Py_ssize_t numphase = 0;
Py_ssize_t minrevallphases = 0;
Py_ssize_t minrevphase = 0;
Py_ssize_t i = 0;
char *phases = NULL;
long phase;
if (!PyArg_ParseTuple(args, "O", &roots))
goto done;
if (roots == NULL || !PyList_Check(roots)) {
PyErr_SetString(PyExc_TypeError, "roots must be a list");
goto done;
}
phases = calloc(len, 1); /* phase per rev: {0: public, 1: draft, 2: secret} */
if (phases == NULL) {
PyErr_NoMemory();
goto done;
}
/* Put the phase information of all the roots in phases */
numphase = PyList_GET_SIZE(roots)+1;
minrevallphases = len + 1;
phasessetlist = PyList_New(numphase);
if (phasessetlist == NULL)
goto done;
PyList_SET_ITEM(phasessetlist, 0, Py_None);
Py_INCREF(Py_None);
for (i = 0; i < numphase-1; i++) {
phaseroots = PyList_GET_ITEM(roots, i);
phaseset = PySet_New(NULL);
if (phaseset == NULL)
goto release;
PyList_SET_ITEM(phasessetlist, i+1, phaseset);
if (!PyList_Check(phaseroots)) {
PyErr_SetString(PyExc_TypeError,
"roots item must be a list");
goto release;
}
minrevphase = add_roots_get_min(self, phaseroots, i+1, phases);
if (minrevphase == -2) /* Error from add_roots_get_min */
goto release;
minrevallphases = MIN(minrevallphases, minrevphase);
}
/* Propagate the phase information from the roots to the revs */
if (minrevallphases != -1) {
int parents[2];
for (i = minrevallphases; i < len; i++) {
if (index_get_parents(self, i, parents,
(int)len - 1) < 0)
goto release;
set_phase_from_parents(phases, parents[0], parents[1], i);
}
}
/* Transform phase list to a python list */
phasessize = PyInt_FromLong(len);
if (phasessize == NULL)
goto release;
for (i = 0; i < len; i++) {
phase = phases[i];
/* We only store the sets of phase for non public phase, the public phase
* is computed as a difference */
if (phase != 0) {
phaseset = PyList_GET_ITEM(phasessetlist, phase);
rev = PyInt_FromLong(i);
if (rev == NULL)
goto release;
PySet_Add(phaseset, rev);
Py_XDECREF(rev);
}
}
ret = PyTuple_Pack(2, phasessize, phasessetlist);
release:
Py_XDECREF(phasessize);
Py_XDECREF(phasessetlist);
done:
free(phases);
return ret;
}
static PyObject *index_headrevs(indexObject *self, PyObject *args)
{
Py_ssize_t i, j, len;
char *nothead = NULL;
PyObject *heads = NULL;
PyObject *filter = NULL;
PyObject *filteredrevs = Py_None;
if (!PyArg_ParseTuple(args, "|O", &filteredrevs)) {
return NULL;
}
if (self->headrevs && filteredrevs == self->filteredrevs)
return list_copy(self->headrevs);
Py_DECREF(self->filteredrevs);
self->filteredrevs = filteredrevs;
Py_INCREF(filteredrevs);
if (filteredrevs != Py_None) {
filter = PyObject_GetAttrString(filteredrevs, "__contains__");
if (!filter) {
PyErr_SetString(PyExc_TypeError,
"filteredrevs has no attribute __contains__");
goto bail;
}
}
len = index_length(self) - 1;
heads = PyList_New(0);
if (heads == NULL)
goto bail;
if (len == 0) {
PyObject *nullid = PyInt_FromLong(-1);
if (nullid == NULL || PyList_Append(heads, nullid) == -1) {
Py_XDECREF(nullid);
goto bail;
}
goto done;
}
nothead = calloc(len, 1);
if (nothead == NULL) {
PyErr_NoMemory();
goto bail;
}
for (i = len - 1; i >= 0; i--) {
int isfiltered;
int parents[2];
/* If nothead[i] == 1, it means we've seen an unfiltered child of this
* node already, and therefore this node is not filtered. So we can skip
* the expensive check_filter step.
*/
if (nothead[i] != 1) {
isfiltered = check_filter(filter, i);
if (isfiltered == -1) {
PyErr_SetString(PyExc_TypeError,
"unable to check filter");
goto bail;
}
if (isfiltered) {
nothead[i] = 1;
continue;
}
}
if (index_get_parents(self, i, parents, (int)len - 1) < 0)
goto bail;
for (j = 0; j < 2; j++) {
if (parents[j] >= 0)
nothead[parents[j]] = 1;
}
}
for (i = 0; i < len; i++) {
PyObject *head;
if (nothead[i])
continue;
head = PyInt_FromSsize_t(i);
if (head == NULL || PyList_Append(heads, head) == -1) {
Py_XDECREF(head);
goto bail;
}
}
done:
self->headrevs = heads;
Py_XDECREF(filter);
free(nothead);
return list_copy(self->headrevs);
bail:
Py_XDECREF(filter);
Py_XDECREF(heads);
free(nothead);
return NULL;
}
/**
* Obtain the base revision index entry.
*
* Callers must ensure that rev >= 0 or illegal memory access may occur.
*/
static inline int index_baserev(indexObject *self, int rev)
{
const char *data;
if (rev >= self->length - 1) {
PyObject *tuple = PyList_GET_ITEM(self->added,
rev - self->length + 1);
return (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 3));
}
else {
data = index_deref(self, rev);
if (data == NULL) {
return -2;
}
return getbe32(data + 16);
}
}
static PyObject *index_deltachain(indexObject *self, PyObject *args)
{
int rev, generaldelta;
PyObject *stoparg;
int stoprev, iterrev, baserev = -1;
int stopped;
PyObject *chain = NULL, *result = NULL;
const Py_ssize_t length = index_length(self);
if (!PyArg_ParseTuple(args, "iOi", &rev, &stoparg, &generaldelta)) {
return NULL;
}
if (PyInt_Check(stoparg)) {
stoprev = (int)PyInt_AsLong(stoparg);
if (stoprev == -1 && PyErr_Occurred()) {
return NULL;
}
}
else if (stoparg == Py_None) {
stoprev = -2;
}
else {
PyErr_SetString(PyExc_ValueError,
"stoprev must be integer or None");
return NULL;
}
if (rev < 0 || rev >= length - 1) {
PyErr_SetString(PyExc_ValueError, "revlog index out of range");
return NULL;
}
chain = PyList_New(0);
if (chain == NULL) {
return NULL;
}
baserev = index_baserev(self, rev);
/* This should never happen. */
if (baserev <= -2) {
/* Error should be set by index_deref() */
assert(PyErr_Occurred());
goto bail;
}
iterrev = rev;
while (iterrev != baserev && iterrev != stoprev) {
PyObject *value = PyInt_FromLong(iterrev);
if (value == NULL) {
goto bail;
}
if (PyList_Append(chain, value)) {
Py_DECREF(value);
goto bail;
}
Py_DECREF(value);
if (generaldelta) {
iterrev = baserev;
}
else {
iterrev--;
}
if (iterrev < 0) {
break;
}
if (iterrev >= length - 1) {
PyErr_SetString(PyExc_IndexError, "revision outside index");
return NULL;
}
baserev = index_baserev(self, iterrev);
/* This should never happen. */
if (baserev <= -2) {
/* Error should be set by index_deref() */
assert(PyErr_Occurred());
goto bail;
}
}
if (iterrev == stoprev) {
stopped = 1;
}
else {
PyObject *value = PyInt_FromLong(iterrev);
if (value == NULL) {
goto bail;
}
if (PyList_Append(chain, value)) {
Py_DECREF(value);
goto bail;
}
Py_DECREF(value);
stopped = 0;
}
if (PyList_Reverse(chain)) {
goto bail;
}
result = Py_BuildValue("OO", chain, stopped ? Py_True : Py_False);
Py_DECREF(chain);
return result;
bail:
Py_DECREF(chain);
return NULL;
}
static inline int nt_level(const char *node, Py_ssize_t level)
{
int v = node[level>>1];
if (!(level & 1))
v >>= 4;
return v & 0xf;
}
/*
* Return values:
*
* -4: match is ambiguous (multiple candidates)
* -2: not found
* rest: valid rev
*/
static int nt_find(indexObject *self, const char *node, Py_ssize_t nodelen,
int hex)
{
int (*getnybble)(const char *, Py_ssize_t) = hex ? hexdigit : nt_level;
int level, maxlevel, off;
if (nodelen == 20 && node[0] == '\0' && memcmp(node, nullid, 20) == 0)
return -1;
if (self->nt == NULL)
return -2;
if (hex)
maxlevel = nodelen > 40 ? 40 : (int)nodelen;
else
maxlevel = nodelen > 20 ? 40 : ((int)nodelen * 2);
for (level = off = 0; level < maxlevel; level++) {
int k = getnybble(node, level);
nodetree *n = &self->nt[off];
int v = n->children[k];
if (v < 0) {
const char *n;
Py_ssize_t i;
v = -(v + 1);
n = index_node(self, v);
if (n == NULL)
return -2;
for (i = level; i < maxlevel; i++)
if (getnybble(node, i) != nt_level(n, i))
return -2;
return v;
}
if (v == 0)
return -2;
off = v;
}
/* multiple matches against an ambiguous prefix */
return -4;
}
static int nt_new(indexObject *self)
{
if (self->ntlength == self->ntcapacity) {
if (self->ntcapacity >= INT_MAX / (sizeof(nodetree) * 2)) {
PyErr_SetString(PyExc_MemoryError,
"overflow in nt_new");
return -1;
}
self->ntcapacity *= 2;
self->nt = realloc(self->nt,
self->ntcapacity * sizeof(nodetree));
if (self->nt == NULL) {
PyErr_SetString(PyExc_MemoryError, "out of memory");
return -1;
}
memset(&self->nt[self->ntlength], 0,
sizeof(nodetree) * (self->ntcapacity - self->ntlength));
}
return self->ntlength++;
}
static int nt_insert(indexObject *self, const char *node, int rev)
{
int level = 0;
int off = 0;
while (level < 40) {
int k = nt_level(node, level);
nodetree *n;
int v;
n = &self->nt[off];
v = n->children[k];
if (v == 0) {
n->children[k] = -rev - 1;
return 0;
}
if (v < 0) {
const char *oldnode = index_node_existing(self, -(v + 1));
int noff;
if (oldnode == NULL)
return -1;
if (!memcmp(oldnode, node, 20)) {
n->children[k] = -rev - 1;
return 0;
}
noff = nt_new(self);
if (noff == -1)
return -1;
/* self->nt may have been changed by realloc */
self->nt[off].children[k] = noff;
off = noff;
n = &self->nt[off];
n->children[nt_level(oldnode, ++level)] = v;
if (level > self->ntdepth)
self->ntdepth = level;
self->ntsplits += 1;
} else {
level += 1;
off = v;
}
}
return -1;
}
static int nt_init(indexObject *self)
{
if (self->nt == NULL) {
if ((size_t)self->raw_length > INT_MAX / sizeof(nodetree)) {
PyErr_SetString(PyExc_ValueError, "overflow in nt_init");
return -1;
}
self->ntcapacity = self->raw_length < 4
? 4 : (int)self->raw_length / 2;
self->nt = calloc(self->ntcapacity, sizeof(nodetree));
if (self->nt == NULL) {
PyErr_NoMemory();
return -1;
}
self->ntlength = 1;
self->ntrev = (int)index_length(self) - 1;
self->ntlookups = 1;
self->ntmisses = 0;
if (nt_insert(self, nullid, INT_MAX) == -1)
return -1;
}
return 0;
}
/*
* Return values:
*
* -3: error (exception set)
* -2: not found (no exception set)
* rest: valid rev
*/
static int index_find_node(indexObject *self,
const char *node, Py_ssize_t nodelen)
{
int rev;
self->ntlookups++;
rev = nt_find(self, node, nodelen, 0);
if (rev >= -1)
return rev;
if (nt_init(self) == -1)
return -3;
/*
* For the first handful of lookups, we scan the entire index,
* and cache only the matching nodes. This optimizes for cases
* like "hg tip", where only a few nodes are accessed.
*
* After that, we cache every node we visit, using a single
* scan amortized over multiple lookups. This gives the best
* bulk performance, e.g. for "hg log".
*/
if (self->ntmisses++ < 4) {
for (rev = self->ntrev - 1; rev >= 0; rev--) {
const char *n = index_node_existing(self, rev);
if (n == NULL)
return -3;
if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) {
if (nt_insert(self, n, rev) == -1)
return -3;
break;
}
}
} else {
for (rev = self->ntrev - 1; rev >= 0; rev--) {
const char *n = index_node_existing(self, rev);
if (n == NULL)
return -3;
if (nt_insert(self, n, rev) == -1) {
self->ntrev = rev + 1;
return -3;
}
if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) {
break;
}
}
self->ntrev = rev;
}
if (rev >= 0)
return rev;
return -2;
}
static void raise_revlog_error(void)
{
PyObject *mod = NULL, *dict = NULL, *errclass = NULL;
mod = PyImport_ImportModule("mercurial.error");
if (mod == NULL) {
goto cleanup;
}
dict = PyModule_GetDict(mod);
if (dict == NULL) {
goto cleanup;
}
Py_INCREF(dict);
errclass = PyDict_GetItemString(dict, "RevlogError");
if (errclass == NULL) {
PyErr_SetString(PyExc_SystemError,
"could not find RevlogError");
goto cleanup;
}
/* value of exception is ignored by callers */
PyErr_SetString(errclass, "RevlogError");
cleanup:
Py_XDECREF(dict);
Py_XDECREF(mod);
}
static PyObject *index_getitem(indexObject *self, PyObject *value)
{
char *node;
Py_ssize_t nodelen;
int rev;
if (PyInt_Check(value))
return index_get(self, PyInt_AS_LONG(value));
if (node_check(value, &node, &nodelen) == -1)
return NULL;
rev = index_find_node(self, node, nodelen);
if (rev >= -1)
return PyInt_FromLong(rev);
if (rev == -2)
raise_revlog_error();
return NULL;
}
/*
* Fully populate the radix tree.
*/
static int nt_populate(indexObject *self) {
int rev;
if (self->ntrev > 0) {
for (rev = self->ntrev - 1; rev >= 0; rev--) {
const char *n = index_node_existing(self, rev);
if (n == NULL)
return -1;
if (nt_insert(self, n, rev) == -1)
return -1;
}
self->ntrev = -1;
}
return 0;
}
static int nt_partialmatch(indexObject *self, const char *node,
Py_ssize_t nodelen)
{
if (nt_init(self) == -1)
return -3;
if (nt_populate(self) == -1)
return -3;
return nt_find(self, node, nodelen, 1);
}
/*
* Find the length of the shortest unique prefix of node.
*
* Return values:
*
* -3: error (exception set)
* -2: not found (no exception set)
* rest: length of shortest prefix
*/
static int nt_shortest(indexObject *self, const char *node)
{
int level, off;
if (nt_init(self) == -1)
return -3;
if (nt_populate(self) == -1)
return -3;
for (level = off = 0; level < 40; level++) {
int k, v;
nodetree *n = &self->nt[off];
k = nt_level(node, level);
v = n->children[k];
if (v < 0) {
const char *n;
v = -(v + 1);
n = index_node_existing(self, v);
if (n == NULL)
return -3;
if (memcmp(node, n, 20) != 0)
/*
* Found a unique prefix, but it wasn't for the
* requested node (i.e the requested node does
* not exist).
*/
return -2;
return level + 1;
}
if (v == 0)
return -2;
off = v;
}
/*
* The node was still not unique after 40 hex digits, so this won't
* happen. Also, if we get here, then there's a programming error in
* this file that made us insert a node longer than 40 hex digits.
*/
PyErr_SetString(PyExc_Exception, "broken node tree");
return -3;
}
static PyObject *index_partialmatch(indexObject *self, PyObject *args)
{
const char *fullnode;
int nodelen;
char *node;
int rev, i;
if (!PyArg_ParseTuple(args, PY23("s#", "y#"), &node, &nodelen))
return NULL;
if (nodelen < 1) {
PyErr_SetString(PyExc_ValueError, "key too short");
return NULL;
}
if (nodelen > 40) {
PyErr_SetString(PyExc_ValueError, "key too long");
return NULL;
}
for (i = 0; i < nodelen; i++)
hexdigit(node, i);
if (PyErr_Occurred()) {
/* input contains non-hex characters */
PyErr_Clear();
Py_RETURN_NONE;
}
rev = nt_partialmatch(self, node, nodelen);
switch (rev) {
case -4:
raise_revlog_error();
case -3:
return NULL;
case -2:
Py_RETURN_NONE;
case -1:
return PyBytes_FromStringAndSize(nullid, 20);
}
fullnode = index_node_existing(self, rev);
if (fullnode == NULL) {
return NULL;
}
return PyBytes_FromStringAndSize(fullnode, 20);
}
static PyObject *index_shortest(indexObject *self, PyObject *args)
{
Py_ssize_t nodelen;
PyObject *val;
char *node;
int length;
if (!PyArg_ParseTuple(args, "O", &val))
return NULL;
if (node_check(val, &node, &nodelen) == -1)
return NULL;
self->ntlookups++;
length = nt_shortest(self, node);
if (length == -3)
return NULL;
if (length == -2) {
raise_revlog_error();
return NULL;
}
return PyInt_FromLong(length);
}
static PyObject *index_m_get(indexObject *self, PyObject *args)
{
Py_ssize_t nodelen;
PyObject *val;
char *node;
int rev;
if (!PyArg_ParseTuple(args, "O", &val))
return NULL;
if (node_check(val, &node, &nodelen) == -1)
return NULL;
rev = index_find_node(self, node, nodelen);
if (rev == -3)
return NULL;
if (rev == -2)
Py_RETURN_NONE;
return PyInt_FromLong(rev);
}
static int index_contains(indexObject *self, PyObject *value)
{
char *node;
Py_ssize_t nodelen;
if (PyInt_Check(value)) {
long rev = PyInt_AS_LONG(value);
return rev >= -1 && rev < index_length(self);
}
if (node_check(value, &node, &nodelen) == -1)
return -1;
switch (index_find_node(self, node, nodelen)) {
case -3:
return -1;
case -2:
return 0;
default:
return 1;
}
}
typedef uint64_t bitmask;
/*
* Given a disjoint set of revs, return all candidates for the
* greatest common ancestor. In revset notation, this is the set
* "heads(::a and ::b and ...)"
*/
static PyObject *find_gca_candidates(indexObject *self, const int *revs,
int revcount)
{
const bitmask allseen = (1ull << revcount) - 1;
const bitmask poison = 1ull << revcount;
PyObject *gca = PyList_New(0);
int i, v, interesting;
int maxrev = -1;
bitmask sp;
bitmask *seen;
if (gca == NULL)
return PyErr_NoMemory();
for (i = 0; i < revcount; i++) {
if (revs[i] > maxrev)
maxrev = revs[i];
}
seen = calloc(sizeof(*seen), maxrev + 1);
if (seen == NULL) {
Py_DECREF(gca);
return PyErr_NoMemory();
}
for (i = 0; i < revcount; i++)
seen[revs[i]] = 1ull << i;
interesting = revcount;
for (v = maxrev; v >= 0 && interesting; v--) {
bitmask sv = seen[v];
int parents[2];
if (!sv)
continue;
if (sv < poison) {
interesting -= 1;
if (sv == allseen) {
PyObject *obj = PyInt_FromLong(v);
if (obj == NULL)
goto bail;
if (PyList_Append(gca, obj) == -1) {
Py_DECREF(obj);
goto bail;
}
sv |= poison;
for (i = 0; i < revcount; i++) {
if (revs[i] == v)
goto done;
}
}
}
if (index_get_parents(self, v, parents, maxrev) < 0)
goto bail;
for (i = 0; i < 2; i++) {
int p = parents[i];
if (p == -1)
continue;
sp = seen[p];
if (sv < poison) {
if (sp == 0) {
seen[p] = sv;
interesting++;
}
else if (sp != sv)
seen[p] |= sv;
} else {
if (sp && sp < poison)
interesting--;
seen[p] = sv;
}
}
}
done:
free(seen);
return gca;
bail:
free(seen);
Py_XDECREF(gca);
return NULL;
}
/*
* Given a disjoint set of revs, return the subset with the longest
* path to the root.
*/
static PyObject *find_deepest(indexObject *self, PyObject *revs)
{
const Py_ssize_t revcount = PyList_GET_SIZE(revs);
static const Py_ssize_t capacity = 24;
int *depth, *interesting = NULL;
int i, j, v, ninteresting;
PyObject *dict = NULL, *keys = NULL;
long *seen = NULL;
int maxrev = -1;
long final;
if (revcount > capacity) {
PyErr_Format(PyExc_OverflowError,
"bitset size (%ld) > capacity (%ld)",
(long)revcount, (long)capacity);
return NULL;
}
for (i = 0; i < revcount; i++) {
int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i));
if (n > maxrev)
maxrev = n;
}
depth = calloc(sizeof(*depth), maxrev + 1);
if (depth == NULL)
return PyErr_NoMemory();
seen = calloc(sizeof(*seen), maxrev + 1);
if (seen == NULL) {
PyErr_NoMemory();
goto bail;
}
interesting = calloc(sizeof(*interesting), 1 << revcount);
if (interesting == NULL) {
PyErr_NoMemory();
goto bail;
}
if (PyList_Sort(revs) == -1)
goto bail;
for (i = 0; i < revcount; i++) {
int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i));
long b = 1l << i;
depth[n] = 1;
seen[n] = b;
interesting[b] = 1;
}
/* invariant: ninteresting is the number of non-zero entries in
* interesting. */
ninteresting = (int)revcount;
for (v = maxrev; v >= 0 && ninteresting > 1; v--) {
int dv = depth[v];
int parents[2];
long sv;
if (dv == 0)
continue;
sv = seen[v];
if (index_get_parents(self, v, parents, maxrev) < 0)
goto bail;
for (i = 0; i < 2; i++) {
int p = parents[i];
long sp;
int dp;
if (p == -1)
continue;
dp = depth[p];
sp = seen[p];
if (dp <= dv) {
depth[p] = dv + 1;
if (sp != sv) {
interesting[sv] += 1;
seen[p] = sv;
if (sp) {
interesting[sp] -= 1;
if (interesting[sp] == 0)
ninteresting -= 1;
}
}
}
else if (dv == dp - 1) {
long nsp = sp | sv;
if (nsp == sp)
continue;
seen[p] = nsp;
interesting[sp] -= 1;
if (interesting[sp] == 0)
ninteresting -= 1;
if (interesting[nsp] == 0)
ninteresting += 1;
interesting[nsp] += 1;
}
}
interesting[sv] -= 1;
if (interesting[sv] == 0)
ninteresting -= 1;
}
final = 0;
j = ninteresting;
for (i = 0; i < (int)(2 << revcount) && j > 0; i++) {
if (interesting[i] == 0)
continue;
final |= i;
j -= 1;
}
if (final == 0) {
keys = PyList_New(0);
goto bail;
}
dict = PyDict_New();
if (dict == NULL)
goto bail;
for (i = 0; i < revcount; i++) {
PyObject *key;
if ((final & (1 << i)) == 0)
continue;
key = PyList_GET_ITEM(revs, i);
Py_INCREF(key);
Py_INCREF(Py_None);
if (PyDict_SetItem(dict, key, Py_None) == -1) {
Py_DECREF(key);
Py_DECREF(Py_None);
goto bail;
}
}
keys = PyDict_Keys(dict);
bail:
free(depth);
free(seen);
free(interesting);
Py_XDECREF(dict);
return keys;
}
/*
* Given a (possibly overlapping) set of revs, return all the
* common ancestors heads: heads(::args[0] and ::a[1] and ...)
*/
static PyObject *index_commonancestorsheads(indexObject *self, PyObject *args)
{
PyObject *ret = NULL;
Py_ssize_t argcount, i, len;
bitmask repeat = 0;
int revcount = 0;
int *revs;
argcount = PySequence_Length(args);
revs = PyMem_Malloc(argcount * sizeof(*revs));
if (argcount > 0 && revs == NULL)
return PyErr_NoMemory();
len = index_length(self) - 1;
for (i = 0; i < argcount; i++) {
static const int capacity = 24;
PyObject *obj = PySequence_GetItem(args, i);
bitmask x;
long val;
if (!PyInt_Check(obj)) {
PyErr_SetString(PyExc_TypeError,
"arguments must all be ints");
Py_DECREF(obj);
goto bail;
}
val = PyInt_AsLong(obj);
Py_DECREF(obj);
if (val == -1) {
ret = PyList_New(0);
goto done;
}
if (val < 0 || val >= len) {
PyErr_SetString(PyExc_IndexError,
"index out of range");
goto bail;
}
/* this cheesy bloom filter lets us avoid some more
* expensive duplicate checks in the common set-is-disjoint
* case */
x = 1ull << (val & 0x3f);
if (repeat & x) {
int k;
for (k = 0; k < revcount; k++) {
if (val == revs[k])
goto duplicate;
}
}
else repeat |= x;
if (revcount >= capacity) {
PyErr_Format(PyExc_OverflowError,
"bitset size (%d) > capacity (%d)",
revcount, capacity);
goto bail;
}
revs[revcount++] = (int)val;
duplicate:;
}
if (revcount == 0) {
ret = PyList_New(0);
goto done;
}
if (revcount == 1) {
PyObject *obj;
ret = PyList_New(1);
if (ret == NULL)
goto bail;
obj = PyInt_FromLong(revs[0]);
if (obj == NULL)
goto bail;
PyList_SET_ITEM(ret, 0, obj);
goto done;
}
ret = find_gca_candidates(self, revs, revcount);
if (ret == NULL)
goto bail;
done:
PyMem_Free(revs);
return ret;
bail:
PyMem_Free(revs);
Py_XDECREF(ret);
return NULL;
}
/*
* Given a (possibly overlapping) set of revs, return the greatest
* common ancestors: those with the longest path to the root.
*/
static PyObject *index_ancestors(indexObject *self, PyObject *args)
{
PyObject *ret;
PyObject *gca = index_commonancestorsheads(self, args);
if (gca == NULL)
return NULL;
if (PyList_GET_SIZE(gca) <= 1) {
return gca;
}
ret = find_deepest(self, gca);
Py_DECREF(gca);
return ret;
}
/*
* Invalidate any trie entries introduced by added revs.
*/
static void nt_invalidate_added(indexObject *self, Py_ssize_t start)
{
Py_ssize_t i, len = PyList_GET_SIZE(self->added);
for (i = start; i < len; i++) {
PyObject *tuple = PyList_GET_ITEM(self->added, i);
PyObject *node = PyTuple_GET_ITEM(tuple, 7);
nt_insert(self, PyBytes_AS_STRING(node), -1);
}
if (start == 0)
Py_CLEAR(self->added);
}
/*
* Delete a numeric range of revs, which must be at the end of the
* range, but exclude the sentinel nullid entry.
*/
static int index_slice_del(indexObject *self, PyObject *item)
{
Py_ssize_t start, stop, step, slicelength;
Py_ssize_t length = index_length(self);
int ret = 0;
/* Argument changed from PySliceObject* to PyObject* in Python 3. */
#ifdef IS_PY3K
if (PySlice_GetIndicesEx(item, length,
#else
if (PySlice_GetIndicesEx((PySliceObject*)item, length,
#endif
&start, &stop, &step, &slicelength) < 0)
return -1;
if (slicelength <= 0)
return 0;
if ((step < 0 && start < stop) || (step > 0 && start > stop))
stop = start;
if (step < 0) {
stop = start + 1;
start = stop + step*(slicelength - 1) - 1;
step = -step;
}
if (step != 1) {
PyErr_SetString(PyExc_ValueError,
"revlog index delete requires step size of 1");
return -1;
}
if (stop != length - 1) {
PyErr_SetString(PyExc_IndexError,
"revlog index deletion indices are invalid");
return -1;
}
if (start < self->length - 1) {
if (self->nt) {
Py_ssize_t i;
for (i = start + 1; i < self->length - 1; i++) {
const char *node = index_node_existing(self, i);
if (node == NULL)
return -1;
nt_insert(self, node, -1);
}
if (self->added)
nt_invalidate_added(self, 0);
if (self->ntrev > start)
self->ntrev = (int)start;
}
self->length = start + 1;
if (start < self->raw_length) {
if (self->cache) {
Py_ssize_t i;
for (i = start; i < self->raw_length; i++)
Py_CLEAR(self->cache[i]);
}
self->raw_length = start;
}
goto done;
}
if (self->nt) {
nt_invalidate_added(self, start - self->length + 1);
if (self->ntrev > start)
self->ntrev = (int)start;
}
if (self->added)
ret = PyList_SetSlice(self->added, start - self->length + 1,
PyList_GET_SIZE(self->added), NULL);
done:
Py_CLEAR(self->headrevs);
return ret;
}
/*
* Supported ops:
*
* slice deletion
* string assignment (extend node->rev mapping)
* string deletion (shrink node->rev mapping)
*/
static int index_assign_subscript(indexObject *self, PyObject *item,
PyObject *value)
{
char *node;
Py_ssize_t nodelen;
long rev;
if (PySlice_Check(item) && value == NULL)
return index_slice_del(self, item);
if (node_check(item, &node, &nodelen) == -1)
return -1;
if (value == NULL)
return self->nt ? nt_insert(self, node, -1) : 0;
rev = PyInt_AsLong(value);
if (rev > INT_MAX || rev < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError, "rev out of range");
return -1;
}
if (nt_init(self) == -1)
return -1;
return nt_insert(self, node, (int)rev);
}
/*
* Find all RevlogNG entries in an index that has inline data. Update
* the optional "offsets" table with those entries.
*/
static Py_ssize_t inline_scan(indexObject *self, const char **offsets)
{
const char *data = (const char *)self->buf.buf;
Py_ssize_t pos = 0;
Py_ssize_t end = self->buf.len;
long incr = v1_hdrsize;
Py_ssize_t len = 0;
while (pos + v1_hdrsize <= end && pos >= 0) {
uint32_t comp_len;
/* 3rd element of header is length of compressed inline data */
comp_len = getbe32(data + pos + 8);
incr = v1_hdrsize + comp_len;
if (offsets)
offsets[len] = data + pos;
len++;
pos += incr;
}
if (pos != end) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError, "corrupt index file");
return -1;
}
return len;
}
static int index_init(indexObject *self, PyObject *args)
{
PyObject *data_obj, *inlined_obj;
Py_ssize_t size;
/* Initialize before argument-checking to avoid index_dealloc() crash. */
self->raw_length = 0;
self->added = NULL;
self->cache = NULL;
self->data = NULL;
memset(&self->buf, 0, sizeof(self->buf));
self->headrevs = NULL;
self->filteredrevs = Py_None;
Py_INCREF(Py_None);
self->nt = NULL;
self->offsets = NULL;
if (!PyArg_ParseTuple(args, "OO", &data_obj, &inlined_obj))
return -1;
if (!PyObject_CheckBuffer(data_obj)) {
PyErr_SetString(PyExc_TypeError,
"data does not support buffer interface");
return -1;
}
if (PyObject_GetBuffer(data_obj, &self->buf, PyBUF_SIMPLE) == -1)
return -1;
size = self->buf.len;
self->inlined = inlined_obj && PyObject_IsTrue(inlined_obj);
self->data = data_obj;
self->ntlength = self->ntcapacity = 0;
self->ntdepth = self->ntsplits = 0;
self->ntlookups = self->ntmisses = 0;
self->ntrev = -1;
Py_INCREF(self->data);
if (self->inlined) {
Py_ssize_t len = inline_scan(self, NULL);
if (len == -1)
goto bail;
self->raw_length = len;
self->length = len + 1;
} else {
if (size % v1_hdrsize) {
PyErr_SetString(PyExc_ValueError, "corrupt index file");
goto bail;
}
self->raw_length = size / v1_hdrsize;
self->length = self->raw_length + 1;
}
return 0;
bail:
return -1;
}
static PyObject *index_nodemap(indexObject *self)
{
Py_INCREF(self);
return (PyObject *)self;
}
static void index_dealloc(indexObject *self)
{
_index_clearcaches(self);
Py_XDECREF(self->filteredrevs);
if (self->buf.buf) {
PyBuffer_Release(&self->buf);
memset(&self->buf, 0, sizeof(self->buf));
}
Py_XDECREF(self->data);
Py_XDECREF(self->added);
PyObject_Del(self);
}
static PySequenceMethods index_sequence_methods = {
(lenfunc)index_length, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
(ssizeargfunc)index_get, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)index_contains, /* sq_contains */
};
static PyMappingMethods index_mapping_methods = {
(lenfunc)index_length, /* mp_length */
(binaryfunc)index_getitem, /* mp_subscript */
(objobjargproc)index_assign_subscript, /* mp_ass_subscript */
};
static PyMethodDef index_methods[] = {
{"ancestors", (PyCFunction)index_ancestors, METH_VARARGS,
"return the gca set of the given revs"},
{"commonancestorsheads", (PyCFunction)index_commonancestorsheads,
METH_VARARGS,
"return the heads of the common ancestors of the given revs"},
{"clearcaches", (PyCFunction)index_clearcaches, METH_NOARGS,
"clear the index caches"},
{"get", (PyCFunction)index_m_get, METH_VARARGS,
"get an index entry"},
{"computephasesmapsets", (PyCFunction)compute_phases_map_sets,
METH_VARARGS, "compute phases"},
{"reachableroots2", (PyCFunction)reachableroots2, METH_VARARGS,
"reachableroots"},
{"headrevs", (PyCFunction)index_headrevs, METH_VARARGS,
"get head revisions"}, /* Can do filtering since 3.2 */
{"headrevsfiltered", (PyCFunction)index_headrevs, METH_VARARGS,
"get filtered head revisions"}, /* Can always do filtering */
{"deltachain", (PyCFunction)index_deltachain, METH_VARARGS,
"determine revisions with deltas to reconstruct fulltext"},
{"insert", (PyCFunction)index_insert, METH_VARARGS,
"insert an index entry"},
{"partialmatch", (PyCFunction)index_partialmatch, METH_VARARGS,
"match a potentially ambiguous node ID"},
{"shortest", (PyCFunction)index_shortest, METH_VARARGS,
"find length of shortest hex nodeid of a binary ID"},
{"stats", (PyCFunction)index_stats, METH_NOARGS,
"stats for the index"},
{NULL} /* Sentinel */
};
static PyGetSetDef index_getset[] = {
{"nodemap", (getter)index_nodemap, NULL, "nodemap", NULL},
{NULL} /* Sentinel */
};
static PyTypeObject indexType = {
PyVarObject_HEAD_INIT(NULL, 0) /* header */
"parsers.index", /* tp_name */
sizeof(indexObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)index_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
&index_sequence_methods, /* tp_as_sequence */
&index_mapping_methods, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
"revlog index", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
index_methods, /* tp_methods */
0, /* tp_members */
index_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)index_init, /* tp_init */
0, /* tp_alloc */
};
/*
* returns a tuple of the form (index, index, cache) with elements as
* follows:
*
* index: an index object that lazily parses RevlogNG records
* cache: if data is inlined, a tuple (0, index_file_content), else None
* index_file_content could be a string, or a buffer
*
* added complications are for backwards compatibility
*/
PyObject *parse_index2(PyObject *self, PyObject *args)
{
PyObject *tuple = NULL, *cache = NULL;
indexObject *idx;
int ret;
idx = PyObject_New(indexObject, &indexType);
if (idx == NULL)
goto bail;
ret = index_init(idx, args);
if (ret == -1)
goto bail;
if (idx->inlined) {
cache = Py_BuildValue("iO", 0, idx->data);
if (cache == NULL)
goto bail;
} else {
cache = Py_None;
Py_INCREF(cache);
}
tuple = Py_BuildValue("NN", idx, cache);
if (!tuple)
goto bail;
return tuple;
bail:
Py_XDECREF(idx);
Py_XDECREF(cache);
Py_XDECREF(tuple);
return NULL;
}
void revlog_module_init(PyObject *mod)
{
indexType.tp_new = PyType_GenericNew;
if (PyType_Ready(&indexType) < 0)
return;
Py_INCREF(&indexType);
PyModule_AddObject(mod, "index", (PyObject *)&indexType);
nullentry = Py_BuildValue(PY23("iiiiiiis#", "iiiiiiiy#"), 0, 0, 0,
-1, -1, -1, -1, nullid, 20);
if (nullentry)
PyObject_GC_UnTrack(nullentry);
}