##// END OF EJS Templates
copies: no longer cache the ChangedFiles during copy tracing...
copies: no longer cache the ChangedFiles during copy tracing Now that the copies information for both parents are processed all at once, we no longer needs to cache this information, so we simplify the code. The simpler code is also a (tiny) bit faster overall. Repo Case Source-Rev Dest-Rev # of revisions old time new time Difference Factor time per rev --------------------------------------------------------------------------------------------------------------------------------------------------------------- mercurial x_revs_x_added_0_copies ad6b123de1c7 39cfcef4f463 : 1 revs, 0.000041 s, 0.000041 s, +0.000000 s, × 1.0000, 41 µs/rev mercurial x_revs_x_added_x_copies 2b1c78674230 0c1d10351869 : 6 revs, 0.000102 s, 0.000096 s, -0.000006 s, × 0.9412, 16 µs/rev mercurial x000_revs_x000_added_x_copies 81f8ff2a9bf2 dd3267698d84 : 1032 revs, 0.004254 s, 0.004039 s, -0.000215 s, × 0.9495, 3 µs/rev pypy x_revs_x_added_0_copies aed021ee8ae8 099ed31b181b : 9 revs, 0.000282 s, 0.000189 s, -0.000093 s, × 0.6702, 21 µs/rev pypy x_revs_x000_added_0_copies 4aa4e1f8e19a 359343b9ac0e : 1 revs, 0.000048 s, 0.000047 s, -0.000001 s, × 0.9792, 47 µs/rev pypy x_revs_x_added_x_copies ac52eb7bbbb0 72e022663155 : 7 revs, 0.000211 s, 0.000103 s, -0.000108 s, × 0.4882, 14 µs/rev pypy x_revs_x00_added_x_copies c3b14617fbd7 ace7255d9a26 : 1 revs, 0.000375 s, 0.000286 s, -0.000089 s, × 0.7627, 286 µs/rev pypy x_revs_x000_added_x000_copies df6f7a526b60 a83dc6a2d56f : 6 revs, 0.010574 s, 0.010436 s, -0.000138 s, × 0.9869, 1739 µs/rev pypy x000_revs_xx00_added_0_copies 89a76aede314 2f22446ff07e : 4785 revs, 0.049974 s, 0.047465 s, -0.002509 s, × 0.9498, 9 µs/rev pypy x000_revs_x000_added_x_copies 8a3b5bfd266e 2c68e87c3efe : 6780 revs, 0.084300 s, 0.082351 s, -0.001949 s, × 0.9769, 12 µs/rev pypy x000_revs_x000_added_x000_copies 89a76aede314 7b3dda341c84 : 5441 revs, 0.060128 s, 0.058757 s, -0.001371 s, × 0.9772, 10 µs/rev pypy x0000_revs_x_added_0_copies d1defd0dc478 c9cb1334cc78 : 43645 revs, 0.686542 s, 0.674129 s, -0.012413 s, × 0.9819, 15 µs/rev pypy x0000_revs_xx000_added_0_copies bf2c629d0071 4ffed77c095c : 2 revs, 0.009277 s, 0.009434 s, +0.000157 s, × 1.0169, 4717 µs/rev pypy x0000_revs_xx000_added_x000_copies 08ea3258278e d9fa043f30c0 : 11316 revs, 0.114733 s, 0.111935 s, -0.002798 s, × 0.9756, 9 µs/rev netbeans x_revs_x_added_0_copies fb0955ffcbcd a01e9239f9e7 : 2 revs, 0.000081 s, 0.000078 s, -0.000003 s, × 0.9630, 39 µs/rev netbeans x_revs_x000_added_0_copies 6f360122949f 20eb231cc7d0 : 2 revs, 0.000107 s, 0.000106 s, -0.000001 s, × 0.9907, 53 µs/rev netbeans x_revs_x_added_x_copies 1ada3faf6fb6 5a39d12eecf4 : 3 revs, 0.000173 s, 0.000162 s, -0.000011 s, × 0.9364, 54 µs/rev netbeans x_revs_x00_added_x_copies 35be93ba1e2c 9eec5e90c05f : 9 revs, 0.000698 s, 0.000695 s, -0.000003 s, × 0.9957, 77 µs/rev netbeans x000_revs_xx00_added_0_copies eac3045b4fdd 51d4ae7f1290 : 1421 revs, 0.009248 s, 0.008901 s, -0.000347 s, × 0.9625, 6 µs/rev netbeans x000_revs_x000_added_x_copies e2063d266acd 6081d72689dc : 1533 revs, 0.015446 s, 0.014333 s, -0.001113 s, × 0.9279, 9 µs/rev netbeans x000_revs_x000_added_x000_copies ff453e9fee32 411350406ec2 : 5750 revs, 0.074373 s, 0.071998 s, -0.002375 s, × 0.9681, 12 µs/rev netbeans x0000_revs_xx000_added_x000_copies 588c2d1ced70 1aad62e59ddd : 66949 revs, 0.639870 s, 0.615346 s, -0.024524 s, × 0.9617, 9 µs/rev mozilla-central x_revs_x_added_0_copies 3697f962bb7b 7015fcdd43a2 : 2 revs, 0.000088 s, 0.000085 s, -0.000003 s, × 0.9659, 42 µs/rev mozilla-central x_revs_x000_added_0_copies dd390860c6c9 40d0c5bed75d : 8 revs, 0.000199 s, 0.000199 s, +0.000000 s, × 1.0000, 24 µs/rev mozilla-central x_revs_x_added_x_copies 8d198483ae3b 14207ffc2b2f : 9 revs, 0.000171 s, 0.000169 s, -0.000002 s, × 0.9883, 18 µs/rev mozilla-central x_revs_x00_added_x_copies 98cbc58cc6bc 446a150332c3 : 7 revs, 0.000592 s, 0.000590 s, -0.000002 s, × 0.9966, 84 µs/rev mozilla-central x_revs_x000_added_x000_copies 3c684b4b8f68 0a5e72d1b479 : 3 revs, 0.003151 s, 0.003122 s, -0.000029 s, × 0.9908, 1040 µs/rev mozilla-central x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 6 revs, 0.061612 s, 0.061192 s, -0.000420 s, × 0.9932, 10198 µs/rev mozilla-central x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 1593 revs, 0.005381 s, 0.005137 s, -0.000244 s, × 0.9547, 3 µs/rev mozilla-central x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 41 revs, 0.003742 s, 0.003585 s, -0.000157 s, × 0.9580, 87 µs/rev mozilla-central x000_revs_x000_added_x000_copies 7c97034feb78 4407bd0c6330 : 7839 revs, 0.061983 s, 0.060592 s, -0.001391 s, × 0.9776, 7 µs/rev mozilla-central x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 615 revs, 0.019861 s, 0.019596 s, -0.000265 s, × 0.9867, 31 µs/rev mozilla-central x0000_revs_xx000_added_x000_copies f78c615a656c 96a38b690156 : 30263 revs, 0.188101 s, 0.183558 s, -0.004543 s, × 0.9758, 6 µs/rev mozilla-central x00000_revs_x0000_added_x0000_copies 6832ae71433c 4c222a1d9a00 : 153721 revs, 1.806696 s, 1.758083 s, -0.048613 s, × 0.9731, 11 µs/rev mozilla-central x00000_revs_x00000_added_x000_copies 76caed42cf7c 1daa622bbe42 : 204976 revs, 2.682987 s, 2.592955 s, -0.090032 s, × 0.9664, 12 µs/rev mozilla-try x_revs_x_added_0_copies aaf6dde0deb8 9790f499805a : 2 revs, 0.000852 s, 0.000844 s, -0.000008 s, × 0.9906, 422 µs/rev mozilla-try x_revs_x000_added_0_copies d8d0222927b4 5bb8ce8c7450 : 2 revs, 0.000859 s, 0.000861 s, +0.000002 s, × 1.0023, 430 µs/rev mozilla-try x_revs_x_added_x_copies 092fcca11bdb 936255a0384a : 4 revs, 0.000150 s, 0.000150 s, +0.000000 s, × 1.0000, 37 µs/rev mozilla-try x_revs_x00_added_x_copies b53d2fadbdb5 017afae788ec : 2 revs, 0.001158 s, 0.001166 s, +0.000008 s, × 1.0069, 583 µs/rev mozilla-try x_revs_x000_added_x000_copies 20408ad61ce5 6f0ee96e21ad : 1 revs, 0.027240 s, 0.027359 s, +0.000119 s, × 1.0044, 27359 µs/rev mozilla-try x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 6 revs, 0.062824 s, 0.061848 s, -0.000976 s, × 0.9845, 10308 µs/rev mozilla-try x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 1593 revs, 0.005463 s, 0.005110 s, -0.000353 s, × 0.9354, 3 µs/rev mozilla-try x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 41 revs, 0.004238 s, 0.004168 s, -0.000070 s, × 0.9835, 101 µs/rev mozilla-try x000_revs_x000_added_x000_copies 1346fd0130e4 4c65cbdabc1f : 6657 revs, 0.064113 s, 0.063414 s, -0.000699 s, × 0.9891, 9 µs/rev mozilla-try x0000_revs_x_added_0_copies 63519bfd42ee a36a2a865d92 : 40314 revs, 0.294063 s, 0.288301 s, -0.005762 s, × 0.9804, 7 µs/rev mozilla-try x0000_revs_x_added_x_copies 9fe69ff0762d bcabf2a78927 : 38690 revs, 0.281493 s, 0.275798 s, -0.005695 s, × 0.9798, 7 µs/rev mozilla-try x0000_revs_xx000_added_x_copies 156f6e2674f2 4d0f2c178e66 : 8598 revs, 0.076323 s, 0.074640 s, -0.001683 s, × 0.9779, 8 µs/rev mozilla-try x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 615 revs, 0.020390 s, 0.020327 s, -0.000063 s, × 0.9969, 33 µs/rev mozilla-try x0000_revs_xx000_added_x000_copies 89294cd501d9 7ccb2fc7ccb5 : 97052 revs, 3.023879 s, 2.970385 s, -0.053494 s, × 0.9823, 30 µs/rev mozilla-try x0000_revs_x0000_added_x0000_copies e928c65095ed e951f4ad123a : 52031 revs, 0.735549 s, 0.719432 s, -0.016117 s, × 0.9781, 13 µs/rev mozilla-try x00000_revs_x_added_0_copies 6a320851d377 1ebb79acd503 : 363753 revs, 18.568900 s, 18.165143 s, -0.403757 s, × 0.9783, 49 µs/rev mozilla-try x00000_revs_x00000_added_0_copies dc8a3ca7010e d16fde900c9c : 34414 revs, 0.502584 s, 0.486769 s, -0.015815 s, × 0.9685, 14 µs/rev mozilla-try x00000_revs_x_added_x_copies 5173c4b6f97c 95d83ee7242d : 362229 revs, 18.356645 s, 17.913924 s, -0.442721 s, × 0.9759, 49 µs/rev mozilla-try x00000_revs_x000_added_x_copies 9126823d0e9c ca82787bb23c : 359344 revs, 18.250393 s, 17.660113 s, -0.590280 s, × 0.9677, 49 µs/rev mozilla-try x00000_revs_x0000_added_x0000_copies 8d3fafa80d4b eb884023b810 : 192665 revs, 2.792459 s, 2.709446 s, -0.083013 s, × 0.9703, 14 µs/rev mozilla-try x00000_revs_x00000_added_x0000_copies 1b661134e2ca 1ae03d022d6d : 228985 revs, 107.697264 s, 107.796891 s, +0.099627 s, × 1.0009, 470 µs/rev mozilla-try x00000_revs_x00000_added_x000_copies 9b2a99adc05e 8e29777b48e6 : 382065 revs, 63.961040 s, 63.575217 s, -0.385823 s, × 0.9940, 166 µs/rev Differential Revision: https://phab.mercurial-scm.org/D9423

File last commit:

r46554:89a2afe3 default
r46765:a132aa59 default
Show More
worker.py
455 lines | 15.0 KiB | text/x-python | PythonLexer
# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import errno
import os
import signal
import sys
import threading
import time
try:
import selectors
selectors.BaseSelector
except ImportError:
from .thirdparty import selectors2 as selectors
from .i18n import _
from . import (
encoding,
error,
pycompat,
scmutil,
util,
)
def countcpus():
'''try to count the number of CPUs on the system'''
# posix
try:
n = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if n > 0:
return n
except (AttributeError, ValueError):
pass
# windows
try:
n = int(encoding.environ[b'NUMBER_OF_PROCESSORS'])
if n > 0:
return n
except (KeyError, ValueError):
pass
return 1
def _numworkers(ui):
s = ui.config(b'worker', b'numcpus')
if s:
try:
n = int(s)
if n >= 1:
return n
except ValueError:
raise error.Abort(_(b'number of cpus must be an integer'))
return min(max(countcpus(), 4), 32)
if pycompat.ispy3:
class _blockingreader(object):
def __init__(self, wrapped):
self._wrapped = wrapped
# Do NOT implement readinto() by making it delegate to
# _wrapped.readinto(), since that is unbuffered. The unpickler is fine
# with just read() and readline(), so we don't need to implement it.
def readline(self):
return self._wrapped.readline()
# issue multiple reads until size is fulfilled
def read(self, size=-1):
if size < 0:
return self._wrapped.readall()
buf = bytearray(size)
view = memoryview(buf)
pos = 0
while pos < size:
ret = self._wrapped.readinto(view[pos:])
if not ret:
break
pos += ret
del view
del buf[pos:]
return bytes(buf)
else:
def _blockingreader(wrapped):
return wrapped
if pycompat.isposix or pycompat.iswindows:
_STARTUP_COST = 0.01
# The Windows worker is thread based. If tasks are CPU bound, threads
# in the presence of the GIL result in excessive context switching and
# this overhead can slow down execution.
_DISALLOW_THREAD_UNSAFE = pycompat.iswindows
else:
_STARTUP_COST = 1e30
_DISALLOW_THREAD_UNSAFE = False
def worthwhile(ui, costperop, nops, threadsafe=True):
"""try to determine whether the benefit of multiple processes can
outweigh the cost of starting them"""
if not threadsafe and _DISALLOW_THREAD_UNSAFE:
return False
linear = costperop * nops
workers = _numworkers(ui)
benefit = linear - (_STARTUP_COST * workers + linear / workers)
return benefit >= 0.15
def worker(
ui, costperarg, func, staticargs, args, hasretval=False, threadsafe=True
):
"""run a function, possibly in parallel in multiple worker
processes.
returns a progress iterator
costperarg - cost of a single task
func - function to run. It is expected to return a progress iterator.
staticargs - arguments to pass to every invocation of the function
args - arguments to split into chunks, to pass to individual
workers
hasretval - when True, func and the current function return an progress
iterator then a dict (encoded as an iterator that yield many (False, ..)
then a (True, dict)). The dicts are joined in some arbitrary order, so
overlapping keys are a bad idea.
threadsafe - whether work items are thread safe and can be executed using
a thread-based worker. Should be disabled for CPU heavy tasks that don't
release the GIL.
"""
enabled = ui.configbool(b'worker', b'enabled')
if enabled and worthwhile(ui, costperarg, len(args), threadsafe=threadsafe):
return _platformworker(ui, func, staticargs, args, hasretval)
return func(*staticargs + (args,))
def _posixworker(ui, func, staticargs, args, hasretval):
workers = _numworkers(ui)
oldhandler = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, signal.SIG_IGN)
pids, problem = set(), [0]
def killworkers():
# unregister SIGCHLD handler as all children will be killed. This
# function shouldn't be interrupted by another SIGCHLD; otherwise pids
# could be updated while iterating, which would cause inconsistency.
signal.signal(signal.SIGCHLD, oldchldhandler)
# if one worker bails, there's no good reason to wait for the rest
for p in pids:
try:
os.kill(p, signal.SIGTERM)
except OSError as err:
if err.errno != errno.ESRCH:
raise
def waitforworkers(blocking=True):
for pid in pids.copy():
p = st = 0
while True:
try:
p, st = os.waitpid(pid, (0 if blocking else os.WNOHANG))
break
except OSError as e:
if e.errno == errno.EINTR:
continue
elif e.errno == errno.ECHILD:
# child would already be reaped, but pids yet been
# updated (maybe interrupted just after waitpid)
pids.discard(pid)
break
else:
raise
if not p:
# skip subsequent steps, because child process should
# be still running in this case
continue
pids.discard(p)
st = _exitstatus(st)
if st and not problem[0]:
problem[0] = st
def sigchldhandler(signum, frame):
waitforworkers(blocking=False)
if problem[0]:
killworkers()
oldchldhandler = signal.signal(signal.SIGCHLD, sigchldhandler)
ui.flush()
parentpid = os.getpid()
pipes = []
retval = {}
for pargs in partition(args, min(workers, len(args))):
# Every worker gets its own pipe to send results on, so we don't have to
# implement atomic writes larger than PIPE_BUF. Each forked process has
# its own pipe's descriptors in the local variables, and the parent
# process has the full list of pipe descriptors (and it doesn't really
# care what order they're in).
rfd, wfd = os.pipe()
pipes.append((rfd, wfd))
# make sure we use os._exit in all worker code paths. otherwise the
# worker may do some clean-ups which could cause surprises like
# deadlock. see sshpeer.cleanup for example.
# override error handling *before* fork. this is necessary because
# exception (signal) may arrive after fork, before "pid =" assignment
# completes, and other exception handler (dispatch.py) can lead to
# unexpected code path without os._exit.
ret = -1
try:
pid = os.fork()
if pid == 0:
signal.signal(signal.SIGINT, oldhandler)
signal.signal(signal.SIGCHLD, oldchldhandler)
def workerfunc():
for r, w in pipes[:-1]:
os.close(r)
os.close(w)
os.close(rfd)
for result in func(*(staticargs + (pargs,))):
os.write(wfd, util.pickle.dumps(result))
return 0
ret = scmutil.callcatch(ui, workerfunc)
except: # parent re-raises, child never returns
if os.getpid() == parentpid:
raise
exctype = sys.exc_info()[0]
force = not issubclass(exctype, KeyboardInterrupt)
ui.traceback(force=force)
finally:
if os.getpid() != parentpid:
try:
ui.flush()
except: # never returns, no re-raises
pass
finally:
os._exit(ret & 255)
pids.add(pid)
selector = selectors.DefaultSelector()
for rfd, wfd in pipes:
os.close(wfd)
selector.register(os.fdopen(rfd, 'rb', 0), selectors.EVENT_READ)
def cleanup():
signal.signal(signal.SIGINT, oldhandler)
waitforworkers()
signal.signal(signal.SIGCHLD, oldchldhandler)
selector.close()
return problem[0]
try:
openpipes = len(pipes)
while openpipes > 0:
for key, events in selector.select():
try:
res = util.pickle.load(_blockingreader(key.fileobj))
if hasretval and res[0]:
retval.update(res[1])
else:
yield res
except EOFError:
selector.unregister(key.fileobj)
key.fileobj.close()
openpipes -= 1
except IOError as e:
if e.errno == errno.EINTR:
continue
raise
except: # re-raises
killworkers()
cleanup()
raise
status = cleanup()
if status:
if status < 0:
os.kill(os.getpid(), -status)
raise error.WorkerError(status)
if hasretval:
yield True, retval
def _posixexitstatus(code):
"""convert a posix exit status into the same form returned by
os.spawnv
returns None if the process was stopped instead of exiting"""
if os.WIFEXITED(code):
return os.WEXITSTATUS(code)
elif os.WIFSIGNALED(code):
return -(os.WTERMSIG(code))
def _windowsworker(ui, func, staticargs, args, hasretval):
class Worker(threading.Thread):
def __init__(
self, taskqueue, resultqueue, func, staticargs, *args, **kwargs
):
threading.Thread.__init__(self, *args, **kwargs)
self._taskqueue = taskqueue
self._resultqueue = resultqueue
self._func = func
self._staticargs = staticargs
self._interrupted = False
self.daemon = True
self.exception = None
def interrupt(self):
self._interrupted = True
def run(self):
try:
while not self._taskqueue.empty():
try:
args = self._taskqueue.get_nowait()
for res in self._func(*self._staticargs + (args,)):
self._resultqueue.put(res)
# threading doesn't provide a native way to
# interrupt execution. handle it manually at every
# iteration.
if self._interrupted:
return
except pycompat.queue.Empty:
break
except Exception as e:
# store the exception such that the main thread can resurface
# it as if the func was running without workers.
self.exception = e
raise
threads = []
def trykillworkers():
# Allow up to 1 second to clean worker threads nicely
cleanupend = time.time() + 1
for t in threads:
t.interrupt()
for t in threads:
remainingtime = cleanupend - time.time()
t.join(remainingtime)
if t.is_alive():
# pass over the workers joining failure. it is more
# important to surface the inital exception than the
# fact that one of workers may be processing a large
# task and does not get to handle the interruption.
ui.warn(
_(
b"failed to kill worker threads while "
b"handling an exception\n"
)
)
return
workers = _numworkers(ui)
resultqueue = pycompat.queue.Queue()
taskqueue = pycompat.queue.Queue()
retval = {}
# partition work to more pieces than workers to minimize the chance
# of uneven distribution of large tasks between the workers
for pargs in partition(args, workers * 20):
taskqueue.put(pargs)
for _i in range(workers):
t = Worker(taskqueue, resultqueue, func, staticargs)
threads.append(t)
t.start()
try:
while len(threads) > 0:
while not resultqueue.empty():
res = resultqueue.get()
if hasretval and res[0]:
retval.update(res[1])
else:
yield res
threads[0].join(0.05)
finishedthreads = [_t for _t in threads if not _t.is_alive()]
for t in finishedthreads:
if t.exception is not None:
raise t.exception
threads.remove(t)
except (Exception, KeyboardInterrupt): # re-raises
trykillworkers()
raise
while not resultqueue.empty():
res = resultqueue.get()
if hasretval and res[0]:
retval.update(res[1])
else:
yield res
if hasretval:
yield True, retval
if pycompat.iswindows:
_platformworker = _windowsworker
else:
_platformworker = _posixworker
_exitstatus = _posixexitstatus
def partition(lst, nslices):
"""partition a list into N slices of roughly equal size
The current strategy takes every Nth element from the input. If
we ever write workers that need to preserve grouping in input
we should consider allowing callers to specify a partition strategy.
mpm is not a fan of this partitioning strategy when files are involved.
In his words:
Single-threaded Mercurial makes a point of creating and visiting
files in a fixed order (alphabetical). When creating files in order,
a typical filesystem is likely to allocate them on nearby regions on
disk. Thus, when revisiting in the same order, locality is maximized
and various forms of OS and disk-level caching and read-ahead get a
chance to work.
This effect can be quite significant on spinning disks. I discovered it
circa Mercurial v0.4 when revlogs were named by hashes of filenames.
Tarring a repo and copying it to another disk effectively randomized
the revlog ordering on disk by sorting the revlogs by hash and suddenly
performance of my kernel checkout benchmark dropped by ~10x because the
"working set" of sectors visited no longer fit in the drive's cache and
the workload switched from streaming to random I/O.
What we should really be doing is have workers read filenames from a
ordered queue. This preserves locality and also keeps any worker from
getting more than one file out of balance.
"""
for i in range(nslices):
yield lst[i::nslices]