|
|
# coding: utf8
|
|
|
# copies.py - copy detection for Mercurial
|
|
|
#
|
|
|
# Copyright 2008 Matt Mackall <mpm@selenic.com>
|
|
|
#
|
|
|
# This software may be used and distributed according to the terms of the
|
|
|
# GNU General Public License version 2 or any later version.
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
|
|
import collections
|
|
|
import os
|
|
|
|
|
|
from .i18n import _
|
|
|
from .node import (
|
|
|
nullid,
|
|
|
nullrev,
|
|
|
)
|
|
|
|
|
|
from . import (
|
|
|
match as matchmod,
|
|
|
pathutil,
|
|
|
policy,
|
|
|
pycompat,
|
|
|
util,
|
|
|
)
|
|
|
|
|
|
|
|
|
from .utils import stringutil
|
|
|
|
|
|
from .revlogutils import (
|
|
|
flagutil,
|
|
|
sidedata as sidedatamod,
|
|
|
)
|
|
|
|
|
|
rustmod = policy.importrust("copy_tracing")
|
|
|
|
|
|
|
|
|
def _filter(src, dst, t):
|
|
|
"""filters out invalid copies after chaining"""
|
|
|
|
|
|
# When _chain()'ing copies in 'a' (from 'src' via some other commit 'mid')
|
|
|
# with copies in 'b' (from 'mid' to 'dst'), we can get the different cases
|
|
|
# in the following table (not including trivial cases). For example, case 2
|
|
|
# is where a file existed in 'src' and remained under that name in 'mid' and
|
|
|
# then was renamed between 'mid' and 'dst'.
|
|
|
#
|
|
|
# case src mid dst result
|
|
|
# 1 x y - -
|
|
|
# 2 x y y x->y
|
|
|
# 3 x y x -
|
|
|
# 4 x y z x->z
|
|
|
# 5 - x y -
|
|
|
# 6 x x y x->y
|
|
|
#
|
|
|
# _chain() takes care of chaining the copies in 'a' and 'b', but it
|
|
|
# cannot tell the difference between cases 1 and 2, between 3 and 4, or
|
|
|
# between 5 and 6, so it includes all cases in its result.
|
|
|
# Cases 1, 3, and 5 are then removed by _filter().
|
|
|
|
|
|
for k, v in list(t.items()):
|
|
|
# remove copies from files that didn't exist
|
|
|
if v not in src:
|
|
|
del t[k]
|
|
|
# remove criss-crossed copies
|
|
|
elif k in src and v in dst:
|
|
|
del t[k]
|
|
|
# remove copies to files that were then removed
|
|
|
elif k not in dst:
|
|
|
del t[k]
|
|
|
|
|
|
|
|
|
def _chain(prefix, suffix):
|
|
|
"""chain two sets of copies 'prefix' and 'suffix'"""
|
|
|
result = prefix.copy()
|
|
|
for key, value in pycompat.iteritems(suffix):
|
|
|
result[key] = prefix.get(value, value)
|
|
|
return result
|
|
|
|
|
|
|
|
|
def _tracefile(fctx, am, basemf):
|
|
|
"""return file context that is the ancestor of fctx present in ancestor
|
|
|
manifest am
|
|
|
|
|
|
Note: we used to try and stop after a given limit, however checking if that
|
|
|
limit is reached turned out to be very expensive. we are better off
|
|
|
disabling that feature."""
|
|
|
|
|
|
for f in fctx.ancestors():
|
|
|
path = f.path()
|
|
|
if am.get(path, None) == f.filenode():
|
|
|
return path
|
|
|
if basemf and basemf.get(path, None) == f.filenode():
|
|
|
return path
|
|
|
|
|
|
|
|
|
def _dirstatecopies(repo, match=None):
|
|
|
ds = repo.dirstate
|
|
|
c = ds.copies().copy()
|
|
|
for k in list(c):
|
|
|
if ds[k] not in b'anm' or (match and not match(k)):
|
|
|
del c[k]
|
|
|
return c
|
|
|
|
|
|
|
|
|
def _computeforwardmissing(a, b, match=None):
|
|
|
"""Computes which files are in b but not a.
|
|
|
This is its own function so extensions can easily wrap this call to see what
|
|
|
files _forwardcopies is about to process.
|
|
|
"""
|
|
|
ma = a.manifest()
|
|
|
mb = b.manifest()
|
|
|
return mb.filesnotin(ma, match=match)
|
|
|
|
|
|
|
|
|
def usechangesetcentricalgo(repo):
|
|
|
"""Checks if we should use changeset-centric copy algorithms"""
|
|
|
if repo.filecopiesmode == b'changeset-sidedata':
|
|
|
return True
|
|
|
readfrom = repo.ui.config(b'experimental', b'copies.read-from')
|
|
|
changesetsource = (b'changeset-only', b'compatibility')
|
|
|
return readfrom in changesetsource
|
|
|
|
|
|
|
|
|
def _committedforwardcopies(a, b, base, match):
|
|
|
"""Like _forwardcopies(), but b.rev() cannot be None (working copy)"""
|
|
|
# files might have to be traced back to the fctx parent of the last
|
|
|
# one-side-only changeset, but not further back than that
|
|
|
repo = a._repo
|
|
|
|
|
|
if usechangesetcentricalgo(repo):
|
|
|
return _changesetforwardcopies(a, b, match)
|
|
|
|
|
|
debug = repo.ui.debugflag and repo.ui.configbool(b'devel', b'debug.copies')
|
|
|
dbg = repo.ui.debug
|
|
|
if debug:
|
|
|
dbg(b'debug.copies: looking into rename from %s to %s\n' % (a, b))
|
|
|
am = a.manifest()
|
|
|
basemf = None if base is None else base.manifest()
|
|
|
|
|
|
# find where new files came from
|
|
|
# we currently don't try to find where old files went, too expensive
|
|
|
# this means we can miss a case like 'hg rm b; hg cp a b'
|
|
|
cm = {}
|
|
|
|
|
|
# Computing the forward missing is quite expensive on large manifests, since
|
|
|
# it compares the entire manifests. We can optimize it in the common use
|
|
|
# case of computing what copies are in a commit versus its parent (like
|
|
|
# during a rebase or histedit). Note, we exclude merge commits from this
|
|
|
# optimization, since the ctx.files() for a merge commit is not correct for
|
|
|
# this comparison.
|
|
|
forwardmissingmatch = match
|
|
|
if b.p1() == a and b.p2().node() == nullid:
|
|
|
filesmatcher = matchmod.exact(b.files())
|
|
|
forwardmissingmatch = matchmod.intersectmatchers(match, filesmatcher)
|
|
|
missing = _computeforwardmissing(a, b, match=forwardmissingmatch)
|
|
|
|
|
|
ancestrycontext = a._repo.changelog.ancestors([b.rev()], inclusive=True)
|
|
|
|
|
|
if debug:
|
|
|
dbg(b'debug.copies: missing files to search: %d\n' % len(missing))
|
|
|
|
|
|
for f in sorted(missing):
|
|
|
if debug:
|
|
|
dbg(b'debug.copies: tracing file: %s\n' % f)
|
|
|
fctx = b[f]
|
|
|
fctx._ancestrycontext = ancestrycontext
|
|
|
|
|
|
if debug:
|
|
|
start = util.timer()
|
|
|
opath = _tracefile(fctx, am, basemf)
|
|
|
if opath:
|
|
|
if debug:
|
|
|
dbg(b'debug.copies: rename of: %s\n' % opath)
|
|
|
cm[f] = opath
|
|
|
if debug:
|
|
|
dbg(
|
|
|
b'debug.copies: time: %f seconds\n'
|
|
|
% (util.timer() - start)
|
|
|
)
|
|
|
return cm
|
|
|
|
|
|
|
|
|
def _revinfo_getter(repo, match):
|
|
|
"""returns a function that returns the following data given a <rev>"
|
|
|
|
|
|
* p1: revision number of first parent
|
|
|
* p2: revision number of first parent
|
|
|
* changes: a ChangingFiles object
|
|
|
"""
|
|
|
cl = repo.changelog
|
|
|
parents = cl.parentrevs
|
|
|
flags = cl.flags
|
|
|
|
|
|
HASCOPIESINFO = flagutil.REVIDX_HASCOPIESINFO
|
|
|
|
|
|
changelogrevision = cl.changelogrevision
|
|
|
|
|
|
if rustmod is not None:
|
|
|
|
|
|
def revinfo(rev):
|
|
|
p1, p2 = parents(rev)
|
|
|
if flags(rev) & HASCOPIESINFO:
|
|
|
raw = changelogrevision(rev)._sidedata.get(sidedatamod.SD_FILES)
|
|
|
else:
|
|
|
raw = None
|
|
|
return (p1, p2, raw)
|
|
|
|
|
|
else:
|
|
|
|
|
|
def revinfo(rev):
|
|
|
p1, p2 = parents(rev)
|
|
|
if flags(rev) & HASCOPIESINFO:
|
|
|
changes = changelogrevision(rev).changes
|
|
|
else:
|
|
|
changes = None
|
|
|
return (p1, p2, changes)
|
|
|
|
|
|
return revinfo
|
|
|
|
|
|
|
|
|
def cached_is_ancestor(is_ancestor):
|
|
|
"""return a cached version of is_ancestor"""
|
|
|
cache = {}
|
|
|
|
|
|
def _is_ancestor(anc, desc):
|
|
|
if anc > desc:
|
|
|
return False
|
|
|
elif anc == desc:
|
|
|
return True
|
|
|
key = (anc, desc)
|
|
|
ret = cache.get(key)
|
|
|
if ret is None:
|
|
|
ret = cache[key] = is_ancestor(anc, desc)
|
|
|
return ret
|
|
|
|
|
|
return _is_ancestor
|
|
|
|
|
|
|
|
|
def _changesetforwardcopies(a, b, match):
|
|
|
if a.rev() in (nullrev, b.rev()):
|
|
|
return {}
|
|
|
|
|
|
repo = a.repo().unfiltered()
|
|
|
children = {}
|
|
|
|
|
|
cl = repo.changelog
|
|
|
isancestor = cl.isancestorrev
|
|
|
|
|
|
# To track rename from "A" to B, we need to gather all parent → children
|
|
|
# edges that are contains in `::B` but not in `::A`.
|
|
|
#
|
|
|
#
|
|
|
# To do so, we need to gather all revisions exclusive¹ to "B" (ie¹: `::b -
|
|
|
# ::a`) and also all the "roots point", ie the parents of the exclusive set
|
|
|
# that belong to ::a. These are exactly all the revisions needed to express
|
|
|
# the parent → children we need to combine.
|
|
|
#
|
|
|
# [1] actually, we need to gather all the edges within `(::a)::b`, ie:
|
|
|
# excluding paths that leads to roots that are not ancestors of `a`. We
|
|
|
# keep this out of the explanation because it is hard enough without this special case..
|
|
|
|
|
|
parents = cl._uncheckedparentrevs
|
|
|
graph_roots = (nullrev, nullrev)
|
|
|
|
|
|
ancestors = cl.ancestors([a.rev()], inclusive=True)
|
|
|
revs = cl.findmissingrevs(common=[a.rev()], heads=[b.rev()])
|
|
|
roots = set()
|
|
|
has_graph_roots = False
|
|
|
|
|
|
# iterate over `only(B, A)`
|
|
|
for r in revs:
|
|
|
ps = parents(r)
|
|
|
if ps == graph_roots:
|
|
|
has_graph_roots = True
|
|
|
else:
|
|
|
p1, p2 = ps
|
|
|
|
|
|
# find all the "root points" (see larger comment above)
|
|
|
if p1 != nullrev and p1 in ancestors:
|
|
|
roots.add(p1)
|
|
|
if p2 != nullrev and p2 in ancestors:
|
|
|
roots.add(p2)
|
|
|
if not roots:
|
|
|
# no common revision to track copies from
|
|
|
return {}
|
|
|
if has_graph_roots:
|
|
|
# this deal with the special case mentionned in the [1] footnotes. We
|
|
|
# must filter out revisions that leads to non-common graphroots.
|
|
|
roots = list(roots)
|
|
|
m = min(roots)
|
|
|
h = [b.rev()]
|
|
|
roots_to_head = cl.reachableroots(m, h, roots, includepath=True)
|
|
|
roots_to_head = set(roots_to_head)
|
|
|
revs = [r for r in revs if r in roots_to_head]
|
|
|
|
|
|
if repo.filecopiesmode == b'changeset-sidedata':
|
|
|
# When using side-data, we will process the edges "from" the children.
|
|
|
# We iterate over the childre, gathering previous collected data for
|
|
|
# the parents. Do know when the parents data is no longer necessary, we
|
|
|
# keep a counter of how many children each revision has.
|
|
|
#
|
|
|
# An interresting property of `children_count` is that it only contains
|
|
|
# revision that will be relevant for a edge of the graph. So if a
|
|
|
# children has parent not in `children_count`, that edges should not be
|
|
|
# processed.
|
|
|
children_count = dict((r, 0) for r in roots)
|
|
|
for r in revs:
|
|
|
for p in cl.parentrevs(r):
|
|
|
if p == nullrev:
|
|
|
continue
|
|
|
children_count[r] = 0
|
|
|
if p in children_count:
|
|
|
children_count[p] += 1
|
|
|
revinfo = _revinfo_getter(repo, match)
|
|
|
return _combine_changeset_copies(
|
|
|
revs, children_count, b.rev(), revinfo, match, isancestor
|
|
|
)
|
|
|
else:
|
|
|
# When not using side-data, we will process the edges "from" the parent.
|
|
|
# so we need a full mapping of the parent -> children relation.
|
|
|
children = dict((r, []) for r in roots)
|
|
|
for r in revs:
|
|
|
for p in cl.parentrevs(r):
|
|
|
if p == nullrev:
|
|
|
continue
|
|
|
children[r] = []
|
|
|
if p in children:
|
|
|
children[p].append(r)
|
|
|
x = revs.pop()
|
|
|
assert x == b.rev()
|
|
|
revs.extend(roots)
|
|
|
revs.sort()
|
|
|
|
|
|
revinfo = _revinfo_getter_extra(repo)
|
|
|
return _combine_changeset_copies_extra(
|
|
|
revs, children, b.rev(), revinfo, match, isancestor
|
|
|
)
|
|
|
|
|
|
|
|
|
def _combine_changeset_copies(
|
|
|
revs, children_count, targetrev, revinfo, match, isancestor
|
|
|
):
|
|
|
"""combine the copies information for each item of iterrevs
|
|
|
|
|
|
revs: sorted iterable of revision to visit
|
|
|
children_count: a {parent: <number-of-relevant-children>} mapping.
|
|
|
targetrev: the final copies destination revision (not in iterrevs)
|
|
|
revinfo(rev): a function that return (p1, p2, p1copies, p2copies, removed)
|
|
|
match: a matcher
|
|
|
|
|
|
It returns the aggregated copies information for `targetrev`.
|
|
|
"""
|
|
|
|
|
|
alwaysmatch = match.always()
|
|
|
|
|
|
if rustmod is not None:
|
|
|
final_copies = rustmod.combine_changeset_copies(
|
|
|
list(revs), children_count, targetrev, revinfo, isancestor
|
|
|
)
|
|
|
else:
|
|
|
isancestor = cached_is_ancestor(isancestor)
|
|
|
|
|
|
all_copies = {}
|
|
|
# iterate over all the "children" side of copy tracing "edge"
|
|
|
for current_rev in revs:
|
|
|
p1, p2, changes = revinfo(current_rev)
|
|
|
current_copies = None
|
|
|
# iterate over all parents to chain the existing data with the
|
|
|
# data from the parent → child edge.
|
|
|
for parent, parent_rev in ((1, p1), (2, p2)):
|
|
|
if parent_rev == nullrev:
|
|
|
continue
|
|
|
remaining_children = children_count.get(parent_rev)
|
|
|
if remaining_children is None:
|
|
|
continue
|
|
|
remaining_children -= 1
|
|
|
children_count[parent_rev] = remaining_children
|
|
|
if remaining_children:
|
|
|
copies = all_copies.get(parent_rev, None)
|
|
|
else:
|
|
|
copies = all_copies.pop(parent_rev, None)
|
|
|
|
|
|
if copies is None:
|
|
|
# this is a root
|
|
|
newcopies = copies = {}
|
|
|
elif remaining_children:
|
|
|
newcopies = copies.copy()
|
|
|
else:
|
|
|
newcopies = copies
|
|
|
# chain the data in the edge with the existing data
|
|
|
if changes is not None:
|
|
|
childcopies = {}
|
|
|
if parent == 1:
|
|
|
childcopies = changes.copied_from_p1
|
|
|
elif parent == 2:
|
|
|
childcopies = changes.copied_from_p2
|
|
|
|
|
|
if childcopies:
|
|
|
newcopies = copies.copy()
|
|
|
for dest, source in pycompat.iteritems(childcopies):
|
|
|
prev = copies.get(source)
|
|
|
if prev is not None and prev[1] is not None:
|
|
|
source = prev[1]
|
|
|
newcopies[dest] = (current_rev, source)
|
|
|
assert newcopies is not copies
|
|
|
if changes.removed:
|
|
|
for f in changes.removed:
|
|
|
if f in newcopies:
|
|
|
if newcopies is copies:
|
|
|
# copy on write to avoid affecting potential other
|
|
|
# branches. when there are no other branches, this
|
|
|
# could be avoided.
|
|
|
newcopies = copies.copy()
|
|
|
newcopies[f] = (current_rev, None)
|
|
|
# check potential need to combine the data from another parent (for
|
|
|
# that child). See comment below for details.
|
|
|
if current_copies is None:
|
|
|
current_copies = newcopies
|
|
|
else:
|
|
|
# we are the second parent to work on c, we need to merge our
|
|
|
# work with the other.
|
|
|
#
|
|
|
# In case of conflict, parent 1 take precedence over parent 2.
|
|
|
# This is an arbitrary choice made anew when implementing
|
|
|
# changeset based copies. It was made without regards with
|
|
|
# potential filelog related behavior.
|
|
|
assert parent == 2
|
|
|
current_copies = _merge_copies_dict(
|
|
|
newcopies, current_copies, isancestor, changes
|
|
|
)
|
|
|
all_copies[current_rev] = current_copies
|
|
|
|
|
|
# filter out internal details and return a {dest: source mapping}
|
|
|
final_copies = {}
|
|
|
for dest, (tt, source) in all_copies[targetrev].items():
|
|
|
if source is not None:
|
|
|
final_copies[dest] = source
|
|
|
if not alwaysmatch:
|
|
|
for filename in list(final_copies.keys()):
|
|
|
if not match(filename):
|
|
|
del final_copies[filename]
|
|
|
return final_copies
|
|
|
|
|
|
|
|
|
# constant to decide which side to pick with _merge_copies_dict
|
|
|
PICK_MINOR = 0
|
|
|
PICK_MAJOR = 1
|
|
|
PICK_EITHER = 2
|
|
|
|
|
|
|
|
|
def _merge_copies_dict(minor, major, isancestor, changes):
|
|
|
"""merge two copies-mapping together, minor and major
|
|
|
|
|
|
In case of conflict, value from "major" will be picked.
|
|
|
|
|
|
- `isancestors(low_rev, high_rev)`: callable return True if `low_rev` is an
|
|
|
ancestors of `high_rev`,
|
|
|
|
|
|
- `ismerged(path)`: callable return True if `path` have been merged in the
|
|
|
current revision,
|
|
|
|
|
|
return the resulting dict (in practice, the "minor" object, updated)
|
|
|
"""
|
|
|
for dest, value in major.items():
|
|
|
other = minor.get(dest)
|
|
|
if other is None:
|
|
|
minor[dest] = value
|
|
|
else:
|
|
|
pick = _compare_values(changes, isancestor, dest, other, value)
|
|
|
if pick == PICK_MAJOR:
|
|
|
minor[dest] = value
|
|
|
return minor
|
|
|
|
|
|
|
|
|
def _compare_values(changes, isancestor, dest, minor, major):
|
|
|
"""compare two value within a _merge_copies_dict loop iteration"""
|
|
|
major_tt, major_value = major
|
|
|
minor_tt, minor_value = minor
|
|
|
|
|
|
# evacuate some simple case first:
|
|
|
if major_tt == minor_tt:
|
|
|
# if it comes from the same revision it must be the same value
|
|
|
assert major_value == minor_value
|
|
|
return PICK_EITHER
|
|
|
elif major[1] == minor[1]:
|
|
|
return PICK_EITHER
|
|
|
|
|
|
# actual merging needed: content from "major" wins, unless it is older than
|
|
|
# the branch point or there is a merge
|
|
|
elif changes is not None and major[1] is None and dest in changes.salvaged:
|
|
|
return PICK_MINOR
|
|
|
elif changes is not None and minor[1] is None and dest in changes.salvaged:
|
|
|
return PICK_MAJOR
|
|
|
elif changes is not None and dest in changes.merged:
|
|
|
return PICK_MAJOR
|
|
|
elif not isancestor(major_tt, minor_tt):
|
|
|
if major[1] is not None:
|
|
|
return PICK_MAJOR
|
|
|
elif isancestor(minor_tt, major_tt):
|
|
|
return PICK_MAJOR
|
|
|
return PICK_MINOR
|
|
|
|
|
|
|
|
|
def _revinfo_getter_extra(repo):
|
|
|
"""return a function that return multiple data given a <rev>"i
|
|
|
|
|
|
* p1: revision number of first parent
|
|
|
* p2: revision number of first parent
|
|
|
* p1copies: mapping of copies from p1
|
|
|
* p2copies: mapping of copies from p2
|
|
|
* removed: a list of removed files
|
|
|
* ismerged: a callback to know if file was merged in that revision
|
|
|
"""
|
|
|
cl = repo.changelog
|
|
|
parents = cl.parentrevs
|
|
|
|
|
|
def get_ismerged(rev):
|
|
|
ctx = repo[rev]
|
|
|
|
|
|
def ismerged(path):
|
|
|
if path not in ctx.files():
|
|
|
return False
|
|
|
fctx = ctx[path]
|
|
|
parents = fctx._filelog.parents(fctx._filenode)
|
|
|
nb_parents = 0
|
|
|
for n in parents:
|
|
|
if n != nullid:
|
|
|
nb_parents += 1
|
|
|
return nb_parents >= 2
|
|
|
|
|
|
return ismerged
|
|
|
|
|
|
def revinfo(rev):
|
|
|
p1, p2 = parents(rev)
|
|
|
ctx = repo[rev]
|
|
|
p1copies, p2copies = ctx._copies
|
|
|
removed = ctx.filesremoved()
|
|
|
return p1, p2, p1copies, p2copies, removed, get_ismerged(rev)
|
|
|
|
|
|
return revinfo
|
|
|
|
|
|
|
|
|
def _combine_changeset_copies_extra(
|
|
|
revs, children, targetrev, revinfo, match, isancestor
|
|
|
):
|
|
|
"""version of `_combine_changeset_copies` that works with the Google
|
|
|
specific "extra" based storage for copy information"""
|
|
|
all_copies = {}
|
|
|
alwaysmatch = match.always()
|
|
|
for r in revs:
|
|
|
copies = all_copies.pop(r, None)
|
|
|
if copies is None:
|
|
|
# this is a root
|
|
|
copies = {}
|
|
|
for i, c in enumerate(children[r]):
|
|
|
p1, p2, p1copies, p2copies, removed, ismerged = revinfo(c)
|
|
|
if r == p1:
|
|
|
parent = 1
|
|
|
childcopies = p1copies
|
|
|
else:
|
|
|
assert r == p2
|
|
|
parent = 2
|
|
|
childcopies = p2copies
|
|
|
if not alwaysmatch:
|
|
|
childcopies = {
|
|
|
dst: src for dst, src in childcopies.items() if match(dst)
|
|
|
}
|
|
|
newcopies = copies
|
|
|
if childcopies:
|
|
|
newcopies = copies.copy()
|
|
|
for dest, source in pycompat.iteritems(childcopies):
|
|
|
prev = copies.get(source)
|
|
|
if prev is not None and prev[1] is not None:
|
|
|
source = prev[1]
|
|
|
newcopies[dest] = (c, source)
|
|
|
assert newcopies is not copies
|
|
|
for f in removed:
|
|
|
if f in newcopies:
|
|
|
if newcopies is copies:
|
|
|
# copy on write to avoid affecting potential other
|
|
|
# branches. when there are no other branches, this
|
|
|
# could be avoided.
|
|
|
newcopies = copies.copy()
|
|
|
newcopies[f] = (c, None)
|
|
|
othercopies = all_copies.get(c)
|
|
|
if othercopies is None:
|
|
|
all_copies[c] = newcopies
|
|
|
else:
|
|
|
# we are the second parent to work on c, we need to merge our
|
|
|
# work with the other.
|
|
|
#
|
|
|
# In case of conflict, parent 1 take precedence over parent 2.
|
|
|
# This is an arbitrary choice made anew when implementing
|
|
|
# changeset based copies. It was made without regards with
|
|
|
# potential filelog related behavior.
|
|
|
if parent == 1:
|
|
|
_merge_copies_dict_extra(
|
|
|
othercopies, newcopies, isancestor, ismerged
|
|
|
)
|
|
|
else:
|
|
|
_merge_copies_dict_extra(
|
|
|
newcopies, othercopies, isancestor, ismerged
|
|
|
)
|
|
|
all_copies[c] = newcopies
|
|
|
|
|
|
final_copies = {}
|
|
|
for dest, (tt, source) in all_copies[targetrev].items():
|
|
|
if source is not None:
|
|
|
final_copies[dest] = source
|
|
|
return final_copies
|
|
|
|
|
|
|
|
|
def _merge_copies_dict_extra(minor, major, isancestor, ismerged):
|
|
|
"""version of `_merge_copies_dict` that works with the Google
|
|
|
specific "extra" based storage for copy information"""
|
|
|
for dest, value in major.items():
|
|
|
other = minor.get(dest)
|
|
|
if other is None:
|
|
|
minor[dest] = value
|
|
|
else:
|
|
|
new_tt = value[0]
|
|
|
other_tt = other[0]
|
|
|
if value[1] == other[1]:
|
|
|
continue
|
|
|
# content from "major" wins, unless it is older
|
|
|
# than the branch point or there is a merge
|
|
|
if (
|
|
|
new_tt == other_tt
|
|
|
or not isancestor(new_tt, other_tt)
|
|
|
or ismerged(dest)
|
|
|
):
|
|
|
minor[dest] = value
|
|
|
|
|
|
|
|
|
def _forwardcopies(a, b, base=None, match=None):
|
|
|
"""find {dst@b: src@a} copy mapping where a is an ancestor of b"""
|
|
|
|
|
|
if base is None:
|
|
|
base = a
|
|
|
match = a.repo().narrowmatch(match)
|
|
|
# check for working copy
|
|
|
if b.rev() is None:
|
|
|
cm = _committedforwardcopies(a, b.p1(), base, match)
|
|
|
# combine copies from dirstate if necessary
|
|
|
copies = _chain(cm, _dirstatecopies(b._repo, match))
|
|
|
else:
|
|
|
copies = _committedforwardcopies(a, b, base, match)
|
|
|
return copies
|
|
|
|
|
|
|
|
|
def _backwardrenames(a, b, match):
|
|
|
if a._repo.ui.config(b'experimental', b'copytrace') == b'off':
|
|
|
return {}
|
|
|
|
|
|
# Even though we're not taking copies into account, 1:n rename situations
|
|
|
# can still exist (e.g. hg cp a b; hg mv a c). In those cases we
|
|
|
# arbitrarily pick one of the renames.
|
|
|
# We don't want to pass in "match" here, since that would filter
|
|
|
# the destination by it. Since we're reversing the copies, we want
|
|
|
# to filter the source instead.
|
|
|
f = _forwardcopies(b, a)
|
|
|
r = {}
|
|
|
for k, v in sorted(pycompat.iteritems(f)):
|
|
|
if match and not match(v):
|
|
|
continue
|
|
|
# remove copies
|
|
|
if v in a:
|
|
|
continue
|
|
|
r[v] = k
|
|
|
return r
|
|
|
|
|
|
|
|
|
def pathcopies(x, y, match=None):
|
|
|
"""find {dst@y: src@x} copy mapping for directed compare"""
|
|
|
repo = x._repo
|
|
|
debug = repo.ui.debugflag and repo.ui.configbool(b'devel', b'debug.copies')
|
|
|
if debug:
|
|
|
repo.ui.debug(
|
|
|
b'debug.copies: searching copies from %s to %s\n' % (x, y)
|
|
|
)
|
|
|
if x == y or not x or not y:
|
|
|
return {}
|
|
|
if y.rev() is None and x == y.p1():
|
|
|
if debug:
|
|
|
repo.ui.debug(b'debug.copies: search mode: dirstate\n')
|
|
|
# short-circuit to avoid issues with merge states
|
|
|
return _dirstatecopies(repo, match)
|
|
|
a = y.ancestor(x)
|
|
|
if a == x:
|
|
|
if debug:
|
|
|
repo.ui.debug(b'debug.copies: search mode: forward\n')
|
|
|
copies = _forwardcopies(x, y, match=match)
|
|
|
elif a == y:
|
|
|
if debug:
|
|
|
repo.ui.debug(b'debug.copies: search mode: backward\n')
|
|
|
copies = _backwardrenames(x, y, match=match)
|
|
|
else:
|
|
|
if debug:
|
|
|
repo.ui.debug(b'debug.copies: search mode: combined\n')
|
|
|
base = None
|
|
|
if a.rev() != nullrev:
|
|
|
base = x
|
|
|
copies = _chain(
|
|
|
_backwardrenames(x, a, match=match),
|
|
|
_forwardcopies(a, y, base, match=match),
|
|
|
)
|
|
|
_filter(x, y, copies)
|
|
|
return copies
|
|
|
|
|
|
|
|
|
def mergecopies(repo, c1, c2, base):
|
|
|
"""
|
|
|
Finds moves and copies between context c1 and c2 that are relevant for
|
|
|
merging. 'base' will be used as the merge base.
|
|
|
|
|
|
Copytracing is used in commands like rebase, merge, unshelve, etc to merge
|
|
|
files that were moved/ copied in one merge parent and modified in another.
|
|
|
For example:
|
|
|
|
|
|
o ---> 4 another commit
|
|
|
|
|
|
|
| o ---> 3 commit that modifies a.txt
|
|
|
| /
|
|
|
o / ---> 2 commit that moves a.txt to b.txt
|
|
|
|/
|
|
|
o ---> 1 merge base
|
|
|
|
|
|
If we try to rebase revision 3 on revision 4, since there is no a.txt in
|
|
|
revision 4, and if user have copytrace disabled, we prints the following
|
|
|
message:
|
|
|
|
|
|
```other changed <file> which local deleted```
|
|
|
|
|
|
Returns a tuple where:
|
|
|
|
|
|
"branch_copies" an instance of branch_copies.
|
|
|
|
|
|
"diverge" is a mapping of source name -> list of destination names
|
|
|
for divergent renames.
|
|
|
|
|
|
This function calls different copytracing algorithms based on config.
|
|
|
"""
|
|
|
# avoid silly behavior for update from empty dir
|
|
|
if not c1 or not c2 or c1 == c2:
|
|
|
return branch_copies(), branch_copies(), {}
|
|
|
|
|
|
narrowmatch = c1.repo().narrowmatch()
|
|
|
|
|
|
# avoid silly behavior for parent -> working dir
|
|
|
if c2.node() is None and c1.node() == repo.dirstate.p1():
|
|
|
return (
|
|
|
branch_copies(_dirstatecopies(repo, narrowmatch)),
|
|
|
branch_copies(),
|
|
|
{},
|
|
|
)
|
|
|
|
|
|
copytracing = repo.ui.config(b'experimental', b'copytrace')
|
|
|
if stringutil.parsebool(copytracing) is False:
|
|
|
# stringutil.parsebool() returns None when it is unable to parse the
|
|
|
# value, so we should rely on making sure copytracing is on such cases
|
|
|
return branch_copies(), branch_copies(), {}
|
|
|
|
|
|
if usechangesetcentricalgo(repo):
|
|
|
# The heuristics don't make sense when we need changeset-centric algos
|
|
|
return _fullcopytracing(repo, c1, c2, base)
|
|
|
|
|
|
# Copy trace disabling is explicitly below the node == p1 logic above
|
|
|
# because the logic above is required for a simple copy to be kept across a
|
|
|
# rebase.
|
|
|
if copytracing == b'heuristics':
|
|
|
# Do full copytracing if only non-public revisions are involved as
|
|
|
# that will be fast enough and will also cover the copies which could
|
|
|
# be missed by heuristics
|
|
|
if _isfullcopytraceable(repo, c1, base):
|
|
|
return _fullcopytracing(repo, c1, c2, base)
|
|
|
return _heuristicscopytracing(repo, c1, c2, base)
|
|
|
else:
|
|
|
return _fullcopytracing(repo, c1, c2, base)
|
|
|
|
|
|
|
|
|
def _isfullcopytraceable(repo, c1, base):
|
|
|
"""Checks that if base, source and destination are all no-public branches,
|
|
|
if yes let's use the full copytrace algorithm for increased capabilities
|
|
|
since it will be fast enough.
|
|
|
|
|
|
`experimental.copytrace.sourcecommitlimit` can be used to set a limit for
|
|
|
number of changesets from c1 to base such that if number of changesets are
|
|
|
more than the limit, full copytracing algorithm won't be used.
|
|
|
"""
|
|
|
if c1.rev() is None:
|
|
|
c1 = c1.p1()
|
|
|
if c1.mutable() and base.mutable():
|
|
|
sourcecommitlimit = repo.ui.configint(
|
|
|
b'experimental', b'copytrace.sourcecommitlimit'
|
|
|
)
|
|
|
commits = len(repo.revs(b'%d::%d', base.rev(), c1.rev()))
|
|
|
return commits < sourcecommitlimit
|
|
|
return False
|
|
|
|
|
|
|
|
|
def _checksinglesidecopies(
|
|
|
src, dsts1, m1, m2, mb, c2, base, copy, renamedelete
|
|
|
):
|
|
|
if src not in m2:
|
|
|
# deleted on side 2
|
|
|
if src not in m1:
|
|
|
# renamed on side 1, deleted on side 2
|
|
|
renamedelete[src] = dsts1
|
|
|
elif src not in mb:
|
|
|
# Work around the "short-circuit to avoid issues with merge states"
|
|
|
# thing in pathcopies(): pathcopies(x, y) can return a copy where the
|
|
|
# destination doesn't exist in y.
|
|
|
pass
|
|
|
elif mb[src] != m2[src] and not _related(c2[src], base[src]):
|
|
|
return
|
|
|
elif mb[src] != m2[src] or mb.flags(src) != m2.flags(src):
|
|
|
# modified on side 2
|
|
|
for dst in dsts1:
|
|
|
copy[dst] = src
|
|
|
|
|
|
|
|
|
class branch_copies(object):
|
|
|
"""Information about copies made on one side of a merge/graft.
|
|
|
|
|
|
"copy" is a mapping from destination name -> source name,
|
|
|
where source is in c1 and destination is in c2 or vice-versa.
|
|
|
|
|
|
"movewithdir" is a mapping from source name -> destination name,
|
|
|
where the file at source present in one context but not the other
|
|
|
needs to be moved to destination by the merge process, because the
|
|
|
other context moved the directory it is in.
|
|
|
|
|
|
"renamedelete" is a mapping of source name -> list of destination
|
|
|
names for files deleted in c1 that were renamed in c2 or vice-versa.
|
|
|
|
|
|
"dirmove" is a mapping of detected source dir -> destination dir renames.
|
|
|
This is needed for handling changes to new files previously grafted into
|
|
|
renamed directories.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self, copy=None, renamedelete=None, dirmove=None, movewithdir=None
|
|
|
):
|
|
|
self.copy = {} if copy is None else copy
|
|
|
self.renamedelete = {} if renamedelete is None else renamedelete
|
|
|
self.dirmove = {} if dirmove is None else dirmove
|
|
|
self.movewithdir = {} if movewithdir is None else movewithdir
|
|
|
|
|
|
def __repr__(self):
|
|
|
return '<branch_copies\n copy=%r\n renamedelete=%r\n dirmove=%r\n movewithdir=%r\n>' % (
|
|
|
self.copy,
|
|
|
self.renamedelete,
|
|
|
self.dirmove,
|
|
|
self.movewithdir,
|
|
|
)
|
|
|
|
|
|
|
|
|
def _fullcopytracing(repo, c1, c2, base):
|
|
|
"""The full copytracing algorithm which finds all the new files that were
|
|
|
added from merge base up to the top commit and for each file it checks if
|
|
|
this file was copied from another file.
|
|
|
|
|
|
This is pretty slow when a lot of changesets are involved but will track all
|
|
|
the copies.
|
|
|
"""
|
|
|
m1 = c1.manifest()
|
|
|
m2 = c2.manifest()
|
|
|
mb = base.manifest()
|
|
|
|
|
|
copies1 = pathcopies(base, c1)
|
|
|
copies2 = pathcopies(base, c2)
|
|
|
|
|
|
if not (copies1 or copies2):
|
|
|
return branch_copies(), branch_copies(), {}
|
|
|
|
|
|
inversecopies1 = {}
|
|
|
inversecopies2 = {}
|
|
|
for dst, src in copies1.items():
|
|
|
inversecopies1.setdefault(src, []).append(dst)
|
|
|
for dst, src in copies2.items():
|
|
|
inversecopies2.setdefault(src, []).append(dst)
|
|
|
|
|
|
copy1 = {}
|
|
|
copy2 = {}
|
|
|
diverge = {}
|
|
|
renamedelete1 = {}
|
|
|
renamedelete2 = {}
|
|
|
allsources = set(inversecopies1) | set(inversecopies2)
|
|
|
for src in allsources:
|
|
|
dsts1 = inversecopies1.get(src)
|
|
|
dsts2 = inversecopies2.get(src)
|
|
|
if dsts1 and dsts2:
|
|
|
# copied/renamed on both sides
|
|
|
if src not in m1 and src not in m2:
|
|
|
# renamed on both sides
|
|
|
dsts1 = set(dsts1)
|
|
|
dsts2 = set(dsts2)
|
|
|
# If there's some overlap in the rename destinations, we
|
|
|
# consider it not divergent. For example, if side 1 copies 'a'
|
|
|
# to 'b' and 'c' and deletes 'a', and side 2 copies 'a' to 'c'
|
|
|
# and 'd' and deletes 'a'.
|
|
|
if dsts1 & dsts2:
|
|
|
for dst in dsts1 & dsts2:
|
|
|
copy1[dst] = src
|
|
|
copy2[dst] = src
|
|
|
else:
|
|
|
diverge[src] = sorted(dsts1 | dsts2)
|
|
|
elif src in m1 and src in m2:
|
|
|
# copied on both sides
|
|
|
dsts1 = set(dsts1)
|
|
|
dsts2 = set(dsts2)
|
|
|
for dst in dsts1 & dsts2:
|
|
|
copy1[dst] = src
|
|
|
copy2[dst] = src
|
|
|
# TODO: Handle cases where it was renamed on one side and copied
|
|
|
# on the other side
|
|
|
elif dsts1:
|
|
|
# copied/renamed only on side 1
|
|
|
_checksinglesidecopies(
|
|
|
src, dsts1, m1, m2, mb, c2, base, copy1, renamedelete1
|
|
|
)
|
|
|
elif dsts2:
|
|
|
# copied/renamed only on side 2
|
|
|
_checksinglesidecopies(
|
|
|
src, dsts2, m2, m1, mb, c1, base, copy2, renamedelete2
|
|
|
)
|
|
|
|
|
|
# find interesting file sets from manifests
|
|
|
cache = []
|
|
|
|
|
|
def _get_addedfiles(idx):
|
|
|
if not cache:
|
|
|
addedinm1 = m1.filesnotin(mb, repo.narrowmatch())
|
|
|
addedinm2 = m2.filesnotin(mb, repo.narrowmatch())
|
|
|
u1 = sorted(addedinm1 - addedinm2)
|
|
|
u2 = sorted(addedinm2 - addedinm1)
|
|
|
cache.extend((u1, u2))
|
|
|
return cache[idx]
|
|
|
|
|
|
u1fn = lambda: _get_addedfiles(0)
|
|
|
u2fn = lambda: _get_addedfiles(1)
|
|
|
if repo.ui.debugflag:
|
|
|
u1 = u1fn()
|
|
|
u2 = u2fn()
|
|
|
|
|
|
header = b" unmatched files in %s"
|
|
|
if u1:
|
|
|
repo.ui.debug(
|
|
|
b"%s:\n %s\n" % (header % b'local', b"\n ".join(u1))
|
|
|
)
|
|
|
if u2:
|
|
|
repo.ui.debug(
|
|
|
b"%s:\n %s\n" % (header % b'other', b"\n ".join(u2))
|
|
|
)
|
|
|
|
|
|
renamedeleteset = set()
|
|
|
divergeset = set()
|
|
|
for dsts in diverge.values():
|
|
|
divergeset.update(dsts)
|
|
|
for dsts in renamedelete1.values():
|
|
|
renamedeleteset.update(dsts)
|
|
|
for dsts in renamedelete2.values():
|
|
|
renamedeleteset.update(dsts)
|
|
|
|
|
|
repo.ui.debug(
|
|
|
b" all copies found (* = to merge, ! = divergent, "
|
|
|
b"% = renamed and deleted):\n"
|
|
|
)
|
|
|
for side, copies in ((b"local", copies1), (b"remote", copies2)):
|
|
|
if not copies:
|
|
|
continue
|
|
|
repo.ui.debug(b" on %s side:\n" % side)
|
|
|
for f in sorted(copies):
|
|
|
note = b""
|
|
|
if f in copy1 or f in copy2:
|
|
|
note += b"*"
|
|
|
if f in divergeset:
|
|
|
note += b"!"
|
|
|
if f in renamedeleteset:
|
|
|
note += b"%"
|
|
|
repo.ui.debug(
|
|
|
b" src: '%s' -> dst: '%s' %s\n" % (copies[f], f, note)
|
|
|
)
|
|
|
del renamedeleteset
|
|
|
del divergeset
|
|
|
|
|
|
repo.ui.debug(b" checking for directory renames\n")
|
|
|
|
|
|
dirmove1, movewithdir2 = _dir_renames(repo, c1, copy1, copies1, u2fn)
|
|
|
dirmove2, movewithdir1 = _dir_renames(repo, c2, copy2, copies2, u1fn)
|
|
|
|
|
|
branch_copies1 = branch_copies(copy1, renamedelete1, dirmove1, movewithdir1)
|
|
|
branch_copies2 = branch_copies(copy2, renamedelete2, dirmove2, movewithdir2)
|
|
|
|
|
|
return branch_copies1, branch_copies2, diverge
|
|
|
|
|
|
|
|
|
def _dir_renames(repo, ctx, copy, fullcopy, addedfilesfn):
|
|
|
"""Finds moved directories and files that should move with them.
|
|
|
|
|
|
ctx: the context for one of the sides
|
|
|
copy: files copied on the same side (as ctx)
|
|
|
fullcopy: files copied on the same side (as ctx), including those that
|
|
|
merge.manifestmerge() won't care about
|
|
|
addedfilesfn: function returning added files on the other side (compared to
|
|
|
ctx)
|
|
|
"""
|
|
|
# generate a directory move map
|
|
|
invalid = set()
|
|
|
dirmove = {}
|
|
|
|
|
|
# examine each file copy for a potential directory move, which is
|
|
|
# when all the files in a directory are moved to a new directory
|
|
|
for dst, src in pycompat.iteritems(fullcopy):
|
|
|
dsrc, ddst = pathutil.dirname(src), pathutil.dirname(dst)
|
|
|
if dsrc in invalid:
|
|
|
# already seen to be uninteresting
|
|
|
continue
|
|
|
elif ctx.hasdir(dsrc) and ctx.hasdir(ddst):
|
|
|
# directory wasn't entirely moved locally
|
|
|
invalid.add(dsrc)
|
|
|
elif dsrc in dirmove and dirmove[dsrc] != ddst:
|
|
|
# files from the same directory moved to two different places
|
|
|
invalid.add(dsrc)
|
|
|
else:
|
|
|
# looks good so far
|
|
|
dirmove[dsrc] = ddst
|
|
|
|
|
|
for i in invalid:
|
|
|
if i in dirmove:
|
|
|
del dirmove[i]
|
|
|
del invalid
|
|
|
|
|
|
if not dirmove:
|
|
|
return {}, {}
|
|
|
|
|
|
dirmove = {k + b"/": v + b"/" for k, v in pycompat.iteritems(dirmove)}
|
|
|
|
|
|
for d in dirmove:
|
|
|
repo.ui.debug(
|
|
|
b" discovered dir src: '%s' -> dst: '%s'\n" % (d, dirmove[d])
|
|
|
)
|
|
|
|
|
|
movewithdir = {}
|
|
|
# check unaccounted nonoverlapping files against directory moves
|
|
|
for f in addedfilesfn():
|
|
|
if f not in fullcopy:
|
|
|
for d in dirmove:
|
|
|
if f.startswith(d):
|
|
|
# new file added in a directory that was moved, move it
|
|
|
df = dirmove[d] + f[len(d) :]
|
|
|
if df not in copy:
|
|
|
movewithdir[f] = df
|
|
|
repo.ui.debug(
|
|
|
b" pending file src: '%s' -> dst: '%s'\n"
|
|
|
% (f, df)
|
|
|
)
|
|
|
break
|
|
|
|
|
|
return dirmove, movewithdir
|
|
|
|
|
|
|
|
|
def _heuristicscopytracing(repo, c1, c2, base):
|
|
|
"""Fast copytracing using filename heuristics
|
|
|
|
|
|
Assumes that moves or renames are of following two types:
|
|
|
|
|
|
1) Inside a directory only (same directory name but different filenames)
|
|
|
2) Move from one directory to another
|
|
|
(same filenames but different directory names)
|
|
|
|
|
|
Works only when there are no merge commits in the "source branch".
|
|
|
Source branch is commits from base up to c2 not including base.
|
|
|
|
|
|
If merge is involved it fallbacks to _fullcopytracing().
|
|
|
|
|
|
Can be used by setting the following config:
|
|
|
|
|
|
[experimental]
|
|
|
copytrace = heuristics
|
|
|
|
|
|
In some cases the copy/move candidates found by heuristics can be very large
|
|
|
in number and that will make the algorithm slow. The number of possible
|
|
|
candidates to check can be limited by using the config
|
|
|
`experimental.copytrace.movecandidateslimit` which defaults to 100.
|
|
|
"""
|
|
|
|
|
|
if c1.rev() is None:
|
|
|
c1 = c1.p1()
|
|
|
if c2.rev() is None:
|
|
|
c2 = c2.p1()
|
|
|
|
|
|
changedfiles = set()
|
|
|
m1 = c1.manifest()
|
|
|
if not repo.revs(b'%d::%d', base.rev(), c2.rev()):
|
|
|
# If base is not in c2 branch, we switch to fullcopytracing
|
|
|
repo.ui.debug(
|
|
|
b"switching to full copytracing as base is not "
|
|
|
b"an ancestor of c2\n"
|
|
|
)
|
|
|
return _fullcopytracing(repo, c1, c2, base)
|
|
|
|
|
|
ctx = c2
|
|
|
while ctx != base:
|
|
|
if len(ctx.parents()) == 2:
|
|
|
# To keep things simple let's not handle merges
|
|
|
repo.ui.debug(b"switching to full copytracing because of merges\n")
|
|
|
return _fullcopytracing(repo, c1, c2, base)
|
|
|
changedfiles.update(ctx.files())
|
|
|
ctx = ctx.p1()
|
|
|
|
|
|
copies2 = {}
|
|
|
cp = _forwardcopies(base, c2)
|
|
|
for dst, src in pycompat.iteritems(cp):
|
|
|
if src in m1:
|
|
|
copies2[dst] = src
|
|
|
|
|
|
# file is missing if it isn't present in the destination, but is present in
|
|
|
# the base and present in the source.
|
|
|
# Presence in the base is important to exclude added files, presence in the
|
|
|
# source is important to exclude removed files.
|
|
|
filt = lambda f: f not in m1 and f in base and f in c2
|
|
|
missingfiles = [f for f in changedfiles if filt(f)]
|
|
|
|
|
|
copies1 = {}
|
|
|
if missingfiles:
|
|
|
basenametofilename = collections.defaultdict(list)
|
|
|
dirnametofilename = collections.defaultdict(list)
|
|
|
|
|
|
for f in m1.filesnotin(base.manifest()):
|
|
|
basename = os.path.basename(f)
|
|
|
dirname = os.path.dirname(f)
|
|
|
basenametofilename[basename].append(f)
|
|
|
dirnametofilename[dirname].append(f)
|
|
|
|
|
|
for f in missingfiles:
|
|
|
basename = os.path.basename(f)
|
|
|
dirname = os.path.dirname(f)
|
|
|
samebasename = basenametofilename[basename]
|
|
|
samedirname = dirnametofilename[dirname]
|
|
|
movecandidates = samebasename + samedirname
|
|
|
# f is guaranteed to be present in c2, that's why
|
|
|
# c2.filectx(f) won't fail
|
|
|
f2 = c2.filectx(f)
|
|
|
# we can have a lot of candidates which can slow down the heuristics
|
|
|
# config value to limit the number of candidates moves to check
|
|
|
maxcandidates = repo.ui.configint(
|
|
|
b'experimental', b'copytrace.movecandidateslimit'
|
|
|
)
|
|
|
|
|
|
if len(movecandidates) > maxcandidates:
|
|
|
repo.ui.status(
|
|
|
_(
|
|
|
b"skipping copytracing for '%s', more "
|
|
|
b"candidates than the limit: %d\n"
|
|
|
)
|
|
|
% (f, len(movecandidates))
|
|
|
)
|
|
|
continue
|
|
|
|
|
|
for candidate in movecandidates:
|
|
|
f1 = c1.filectx(candidate)
|
|
|
if _related(f1, f2):
|
|
|
# if there are a few related copies then we'll merge
|
|
|
# changes into all of them. This matches the behaviour
|
|
|
# of upstream copytracing
|
|
|
copies1[candidate] = f
|
|
|
|
|
|
return branch_copies(copies1), branch_copies(copies2), {}
|
|
|
|
|
|
|
|
|
def _related(f1, f2):
|
|
|
"""return True if f1 and f2 filectx have a common ancestor
|
|
|
|
|
|
Walk back to common ancestor to see if the two files originate
|
|
|
from the same file. Since workingfilectx's rev() is None it messes
|
|
|
up the integer comparison logic, hence the pre-step check for
|
|
|
None (f1 and f2 can only be workingfilectx's initially).
|
|
|
"""
|
|
|
|
|
|
if f1 == f2:
|
|
|
return True # a match
|
|
|
|
|
|
g1, g2 = f1.ancestors(), f2.ancestors()
|
|
|
try:
|
|
|
f1r, f2r = f1.linkrev(), f2.linkrev()
|
|
|
|
|
|
if f1r is None:
|
|
|
f1 = next(g1)
|
|
|
if f2r is None:
|
|
|
f2 = next(g2)
|
|
|
|
|
|
while True:
|
|
|
f1r, f2r = f1.linkrev(), f2.linkrev()
|
|
|
if f1r > f2r:
|
|
|
f1 = next(g1)
|
|
|
elif f2r > f1r:
|
|
|
f2 = next(g2)
|
|
|
else: # f1 and f2 point to files in the same linkrev
|
|
|
return f1 == f2 # true if they point to the same file
|
|
|
except StopIteration:
|
|
|
return False
|
|
|
|
|
|
|
|
|
def graftcopies(wctx, ctx, base):
|
|
|
"""reproduce copies between base and ctx in the wctx
|
|
|
|
|
|
Unlike mergecopies(), this function will only consider copies between base
|
|
|
and ctx; it will ignore copies between base and wctx. Also unlike
|
|
|
mergecopies(), this function will apply copies to the working copy (instead
|
|
|
of just returning information about the copies). That makes it cheaper
|
|
|
(especially in the common case of base==ctx.p1()) and useful also when
|
|
|
experimental.copytrace=off.
|
|
|
|
|
|
merge.update() will have already marked most copies, but it will only
|
|
|
mark copies if it thinks the source files are related (see
|
|
|
merge._related()). It will also not mark copies if the file wasn't modified
|
|
|
on the local side. This function adds the copies that were "missed"
|
|
|
by merge.update().
|
|
|
"""
|
|
|
new_copies = pathcopies(base, ctx)
|
|
|
_filter(wctx.p1(), wctx, new_copies)
|
|
|
for dst, src in pycompat.iteritems(new_copies):
|
|
|
wctx[dst].markcopied(src)
|
|
|
|