|
|
use std::collections::{HashMap, HashSet};
|
|
|
use std::fmt::Debug;
|
|
|
use std::ops::Deref;
|
|
|
use std::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
|
|
|
|
|
|
use bitvec::prelude::*;
|
|
|
use byteorder::{BigEndian, ByteOrder};
|
|
|
use bytes_cast::{unaligned, BytesCast};
|
|
|
|
|
|
use super::{NodePrefix, RevlogError, RevlogIndex, REVIDX_KNOWN_FLAGS};
|
|
|
use crate::errors::HgError;
|
|
|
use crate::revlog::node::{
|
|
|
Node, NODE_BYTES_LENGTH, NULL_NODE, STORED_NODE_ID_BYTES,
|
|
|
};
|
|
|
use crate::revlog::{Revision, NULL_REVISION};
|
|
|
use crate::{
|
|
|
dagops, BaseRevision, FastHashMap, Graph, GraphError, UncheckedRevision,
|
|
|
};
|
|
|
|
|
|
pub const INDEX_ENTRY_SIZE: usize = 64;
|
|
|
pub const INDEX_HEADER_SIZE: usize = 4;
|
|
|
pub const COMPRESSION_MODE_INLINE: u8 = 2;
|
|
|
|
|
|
#[derive(Debug)]
|
|
|
pub struct IndexHeader {
|
|
|
pub(super) header_bytes: [u8; INDEX_HEADER_SIZE],
|
|
|
}
|
|
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
|
pub struct IndexHeaderFlags {
|
|
|
flags: u16,
|
|
|
}
|
|
|
|
|
|
/// Corresponds to the high bits of `_format_flags` in python
|
|
|
impl IndexHeaderFlags {
|
|
|
/// Corresponds to FLAG_INLINE_DATA in python
|
|
|
pub fn is_inline(self) -> bool {
|
|
|
self.flags & 1 != 0
|
|
|
}
|
|
|
/// Corresponds to FLAG_GENERALDELTA in python
|
|
|
pub fn uses_generaldelta(self) -> bool {
|
|
|
self.flags & 2 != 0
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Corresponds to the INDEX_HEADER structure,
|
|
|
/// which is parsed as a `header` variable in `_loadindex` in `revlog.py`
|
|
|
impl IndexHeader {
|
|
|
fn format_flags(&self) -> IndexHeaderFlags {
|
|
|
// No "unknown flags" check here, unlike in python. Maybe there should
|
|
|
// be.
|
|
|
IndexHeaderFlags {
|
|
|
flags: BigEndian::read_u16(&self.header_bytes[0..2]),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// The only revlog version currently supported by rhg.
|
|
|
const REVLOGV1: u16 = 1;
|
|
|
|
|
|
/// Corresponds to `_format_version` in Python.
|
|
|
fn format_version(&self) -> u16 {
|
|
|
BigEndian::read_u16(&self.header_bytes[2..4])
|
|
|
}
|
|
|
|
|
|
pub fn parse(index_bytes: &[u8]) -> Result<IndexHeader, HgError> {
|
|
|
if index_bytes.len() < 4 {
|
|
|
return Err(HgError::corrupted(
|
|
|
"corrupted revlog: can't read the index format header",
|
|
|
));
|
|
|
}
|
|
|
Ok(IndexHeader {
|
|
|
header_bytes: {
|
|
|
let bytes: [u8; 4] =
|
|
|
index_bytes[0..4].try_into().expect("impossible");
|
|
|
bytes
|
|
|
},
|
|
|
})
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Abstracts the access to the index bytes since they can be spread between
|
|
|
/// the immutable (bytes) part and the mutable (added) part if any appends
|
|
|
/// happened. This makes it transparent for the callers.
|
|
|
struct IndexData {
|
|
|
/// Immutable bytes, most likely taken from disk
|
|
|
bytes: Box<dyn Deref<Target = [u8]> + Send + Sync>,
|
|
|
/// Used when stripping index contents, keeps track of the start of the
|
|
|
/// first stripped revision, which is used to give a slice of the
|
|
|
/// `bytes` field.
|
|
|
truncation: Option<usize>,
|
|
|
/// Bytes that were added after reading the index
|
|
|
added: Vec<u8>,
|
|
|
first_entry: [u8; INDEX_ENTRY_SIZE],
|
|
|
}
|
|
|
|
|
|
impl IndexData {
|
|
|
pub fn new(bytes: Box<dyn Deref<Target = [u8]> + Send + Sync>) -> Self {
|
|
|
let mut first_entry = [0; INDEX_ENTRY_SIZE];
|
|
|
if bytes.len() >= INDEX_ENTRY_SIZE {
|
|
|
first_entry[INDEX_HEADER_SIZE..]
|
|
|
.copy_from_slice(&bytes[INDEX_HEADER_SIZE..INDEX_ENTRY_SIZE])
|
|
|
}
|
|
|
Self {
|
|
|
bytes,
|
|
|
truncation: None,
|
|
|
added: vec![],
|
|
|
first_entry,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub fn len(&self) -> usize {
|
|
|
match self.truncation {
|
|
|
Some(truncation) => truncation + self.added.len(),
|
|
|
None => self.bytes.len() + self.added.len(),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
fn remove(
|
|
|
&mut self,
|
|
|
rev: Revision,
|
|
|
offsets: Option<&[usize]>,
|
|
|
) -> Result<(), RevlogError> {
|
|
|
let rev = rev.0 as usize;
|
|
|
let truncation = if let Some(offsets) = offsets {
|
|
|
offsets[rev]
|
|
|
} else {
|
|
|
rev * INDEX_ENTRY_SIZE
|
|
|
};
|
|
|
if truncation < self.bytes.len() {
|
|
|
self.truncation = Some(truncation);
|
|
|
self.added.clear();
|
|
|
} else {
|
|
|
self.added.truncate(truncation - self.bytes.len());
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
fn is_new(&self) -> bool {
|
|
|
self.bytes.is_empty()
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl std::ops::Index<std::ops::Range<usize>> for IndexData {
|
|
|
type Output = [u8];
|
|
|
|
|
|
fn index(&self, index: std::ops::Range<usize>) -> &Self::Output {
|
|
|
let start = index.start;
|
|
|
let end = index.end;
|
|
|
let immutable_len = match self.truncation {
|
|
|
Some(truncation) => truncation,
|
|
|
None => self.bytes.len(),
|
|
|
};
|
|
|
if start < immutable_len {
|
|
|
if end > immutable_len {
|
|
|
panic!("index data cannot span existing and added ranges");
|
|
|
}
|
|
|
&self.bytes[index]
|
|
|
} else {
|
|
|
&self.added[start - immutable_len..end - immutable_len]
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
|
pub struct RevisionDataParams {
|
|
|
pub flags: u16,
|
|
|
pub data_offset: u64,
|
|
|
pub data_compressed_length: i32,
|
|
|
pub data_uncompressed_length: i32,
|
|
|
pub data_delta_base: i32,
|
|
|
pub link_rev: i32,
|
|
|
pub parent_rev_1: i32,
|
|
|
pub parent_rev_2: i32,
|
|
|
pub node_id: [u8; NODE_BYTES_LENGTH],
|
|
|
pub _sidedata_offset: u64,
|
|
|
pub _sidedata_compressed_length: i32,
|
|
|
pub data_compression_mode: u8,
|
|
|
pub _sidedata_compression_mode: u8,
|
|
|
pub _rank: i32,
|
|
|
}
|
|
|
|
|
|
impl Default for RevisionDataParams {
|
|
|
fn default() -> Self {
|
|
|
Self {
|
|
|
flags: 0,
|
|
|
data_offset: 0,
|
|
|
data_compressed_length: 0,
|
|
|
data_uncompressed_length: 0,
|
|
|
data_delta_base: -1,
|
|
|
link_rev: -1,
|
|
|
parent_rev_1: -1,
|
|
|
parent_rev_2: -1,
|
|
|
node_id: [0; NODE_BYTES_LENGTH],
|
|
|
_sidedata_offset: 0,
|
|
|
_sidedata_compressed_length: 0,
|
|
|
data_compression_mode: COMPRESSION_MODE_INLINE,
|
|
|
_sidedata_compression_mode: COMPRESSION_MODE_INLINE,
|
|
|
_rank: -1,
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[derive(BytesCast)]
|
|
|
#[repr(C)]
|
|
|
pub struct RevisionDataV1 {
|
|
|
data_offset_or_flags: unaligned::U64Be,
|
|
|
data_compressed_length: unaligned::I32Be,
|
|
|
data_uncompressed_length: unaligned::I32Be,
|
|
|
data_delta_base: unaligned::I32Be,
|
|
|
link_rev: unaligned::I32Be,
|
|
|
parent_rev_1: unaligned::I32Be,
|
|
|
parent_rev_2: unaligned::I32Be,
|
|
|
node_id: [u8; STORED_NODE_ID_BYTES],
|
|
|
}
|
|
|
|
|
|
fn _static_assert_size_of_revision_data_v1() {
|
|
|
let _ = std::mem::transmute::<RevisionDataV1, [u8; 64]>;
|
|
|
}
|
|
|
|
|
|
impl RevisionDataParams {
|
|
|
pub fn validate(&self) -> Result<(), RevlogError> {
|
|
|
if self.flags & !REVIDX_KNOWN_FLAGS != 0 {
|
|
|
return Err(RevlogError::corrupted(format!(
|
|
|
"unknown revlog index flags: {}",
|
|
|
self.flags
|
|
|
)));
|
|
|
}
|
|
|
if self.data_compression_mode != COMPRESSION_MODE_INLINE {
|
|
|
return Err(RevlogError::corrupted(format!(
|
|
|
"invalid data compression mode: {}",
|
|
|
self.data_compression_mode
|
|
|
)));
|
|
|
}
|
|
|
// FIXME isn't this only for v2 or changelog v2?
|
|
|
if self._sidedata_compression_mode != COMPRESSION_MODE_INLINE {
|
|
|
return Err(RevlogError::corrupted(format!(
|
|
|
"invalid sidedata compression mode: {}",
|
|
|
self._sidedata_compression_mode
|
|
|
)));
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
pub fn into_v1(self) -> RevisionDataV1 {
|
|
|
let data_offset_or_flags = self.data_offset << 16 | self.flags as u64;
|
|
|
let mut node_id = [0; STORED_NODE_ID_BYTES];
|
|
|
node_id[..NODE_BYTES_LENGTH].copy_from_slice(&self.node_id);
|
|
|
RevisionDataV1 {
|
|
|
data_offset_or_flags: data_offset_or_flags.into(),
|
|
|
data_compressed_length: self.data_compressed_length.into(),
|
|
|
data_uncompressed_length: self.data_uncompressed_length.into(),
|
|
|
data_delta_base: self.data_delta_base.into(),
|
|
|
link_rev: self.link_rev.into(),
|
|
|
parent_rev_1: self.parent_rev_1.into(),
|
|
|
parent_rev_2: self.parent_rev_2.into(),
|
|
|
node_id,
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// A Revlog index
|
|
|
pub struct Index {
|
|
|
bytes: IndexData,
|
|
|
/// Offsets of starts of index blocks.
|
|
|
/// Only needed when the index is interleaved with data.
|
|
|
offsets: RwLock<Option<Vec<usize>>>,
|
|
|
uses_generaldelta: bool,
|
|
|
is_inline: bool,
|
|
|
/// Cache of (head_revisions, filtered_revisions)
|
|
|
///
|
|
|
/// The head revisions in this index, kept in sync. Should
|
|
|
/// be accessed via the [`Self::head_revs`] method.
|
|
|
/// The last filtered revisions in this index, used to make sure
|
|
|
/// we haven't changed filters when returning the cached `head_revs`.
|
|
|
pub(super) head_revs: RwLock<(Vec<Revision>, HashSet<Revision>)>,
|
|
|
}
|
|
|
|
|
|
impl Debug for Index {
|
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
|
f.debug_struct("Index")
|
|
|
.field("offsets", &self.offsets)
|
|
|
.field("uses_generaldelta", &self.uses_generaldelta)
|
|
|
.finish()
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl Graph for Index {
|
|
|
#[inline(always)]
|
|
|
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
|
|
|
let err = || GraphError::ParentOutOfRange(rev);
|
|
|
match self.get_entry(rev) {
|
|
|
Some(entry) => {
|
|
|
// The C implementation checks that the parents are valid
|
|
|
// before returning
|
|
|
Ok([
|
|
|
self.check_revision(entry.p1()).ok_or_else(err)?,
|
|
|
self.check_revision(entry.p2()).ok_or_else(err)?,
|
|
|
])
|
|
|
}
|
|
|
None => Ok([NULL_REVISION, NULL_REVISION]),
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// A cache suitable for find_snapshots
|
|
|
///
|
|
|
/// Logically equivalent to a mapping whose keys are [`BaseRevision`] and
|
|
|
/// values sets of [`BaseRevision`]
|
|
|
///
|
|
|
/// TODO the dubious part is insisting that errors must be RevlogError
|
|
|
/// we would probably need to sprinkle some magic here, such as an associated
|
|
|
/// type that would be Into<RevlogError> but even that would not be
|
|
|
/// satisfactory, as errors potentially have nothing to do with the revlog.
|
|
|
pub trait SnapshotsCache {
|
|
|
fn insert_for(
|
|
|
&mut self,
|
|
|
rev: BaseRevision,
|
|
|
value: BaseRevision,
|
|
|
) -> Result<(), RevlogError>;
|
|
|
}
|
|
|
|
|
|
impl SnapshotsCache for FastHashMap<BaseRevision, HashSet<BaseRevision>> {
|
|
|
fn insert_for(
|
|
|
&mut self,
|
|
|
rev: BaseRevision,
|
|
|
value: BaseRevision,
|
|
|
) -> Result<(), RevlogError> {
|
|
|
let all_values = self.entry(rev).or_default();
|
|
|
all_values.insert(value);
|
|
|
Ok(())
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl Index {
|
|
|
/// Create an index from bytes.
|
|
|
/// Calculate the start of each entry when is_inline is true.
|
|
|
pub fn new(
|
|
|
bytes: Box<dyn Deref<Target = [u8]> + Send + Sync>,
|
|
|
default_header: IndexHeader,
|
|
|
) -> Result<Self, HgError> {
|
|
|
let header = if bytes.len() < INDEX_ENTRY_SIZE {
|
|
|
default_header
|
|
|
} else {
|
|
|
IndexHeader::parse(bytes.as_ref())?
|
|
|
};
|
|
|
|
|
|
if header.format_version() != IndexHeader::REVLOGV1 {
|
|
|
// A proper new version should have had a repo/store
|
|
|
// requirement.
|
|
|
return Err(HgError::corrupted("unsupported revlog version"));
|
|
|
}
|
|
|
|
|
|
let uses_generaldelta = header.format_flags().uses_generaldelta();
|
|
|
|
|
|
if header.format_flags().is_inline() {
|
|
|
let mut offset: usize = 0;
|
|
|
let mut offsets = Vec::new();
|
|
|
|
|
|
while offset + INDEX_ENTRY_SIZE <= bytes.len() {
|
|
|
offsets.push(offset);
|
|
|
let end = offset + INDEX_ENTRY_SIZE;
|
|
|
let entry = IndexEntry {
|
|
|
bytes: &bytes[offset..end],
|
|
|
};
|
|
|
|
|
|
offset += INDEX_ENTRY_SIZE + entry.compressed_len() as usize;
|
|
|
}
|
|
|
|
|
|
if offset == bytes.len() {
|
|
|
Ok(Self {
|
|
|
bytes: IndexData::new(bytes),
|
|
|
offsets: RwLock::new(Some(offsets)),
|
|
|
uses_generaldelta,
|
|
|
is_inline: true,
|
|
|
head_revs: RwLock::new((vec![], HashSet::new())),
|
|
|
})
|
|
|
} else {
|
|
|
Err(HgError::corrupted("unexpected inline revlog length"))
|
|
|
}
|
|
|
} else {
|
|
|
Ok(Self {
|
|
|
bytes: IndexData::new(bytes),
|
|
|
offsets: RwLock::new(None),
|
|
|
uses_generaldelta,
|
|
|
is_inline: false,
|
|
|
head_revs: RwLock::new((vec![], HashSet::new())),
|
|
|
})
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub fn uses_generaldelta(&self) -> bool {
|
|
|
self.uses_generaldelta
|
|
|
}
|
|
|
|
|
|
/// Value of the inline flag.
|
|
|
pub fn is_inline(&self) -> bool {
|
|
|
self.is_inline
|
|
|
}
|
|
|
|
|
|
/// Return a slice of bytes if `revlog` is inline. Panic if not.
|
|
|
pub fn data(&self, start: usize, end: usize) -> &[u8] {
|
|
|
if !self.is_inline() {
|
|
|
panic!("tried to access data in the index of a revlog that is not inline");
|
|
|
}
|
|
|
&self.bytes[start..end]
|
|
|
}
|
|
|
|
|
|
/// Return number of entries of the revlog index.
|
|
|
pub fn len(&self) -> usize {
|
|
|
if self.is_inline() {
|
|
|
(*self.get_offsets())
|
|
|
.as_ref()
|
|
|
.expect("inline should have offsets")
|
|
|
.len()
|
|
|
} else {
|
|
|
self.bytes.len() / INDEX_ENTRY_SIZE
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Same as `rev_from_node`, without using a persistent nodemap
|
|
|
///
|
|
|
/// This is used as fallback when a persistent nodemap is not present.
|
|
|
/// This happens when the persistent-nodemap experimental feature is not
|
|
|
/// enabled, or for small revlogs.
|
|
|
pub fn rev_from_node_no_persistent_nodemap(
|
|
|
&self,
|
|
|
node: NodePrefix,
|
|
|
) -> Result<Revision, RevlogError> {
|
|
|
// Linear scan of the revlog
|
|
|
// TODO: consider building a non-persistent nodemap in memory to
|
|
|
// optimize these cases.
|
|
|
let mut found_by_prefix = None;
|
|
|
for rev in (-1..self.len() as BaseRevision).rev() {
|
|
|
let rev = Revision(rev as BaseRevision);
|
|
|
let candidate_node = if rev == Revision(-1) {
|
|
|
NULL_NODE
|
|
|
} else {
|
|
|
let index_entry = self.get_entry(rev).ok_or_else(|| {
|
|
|
HgError::corrupted(
|
|
|
"revlog references a revision not in the index",
|
|
|
)
|
|
|
})?;
|
|
|
*index_entry.hash()
|
|
|
};
|
|
|
if node == candidate_node {
|
|
|
return Ok(rev);
|
|
|
}
|
|
|
if node.is_prefix_of(&candidate_node) {
|
|
|
if found_by_prefix.is_some() {
|
|
|
return Err(RevlogError::AmbiguousPrefix);
|
|
|
}
|
|
|
found_by_prefix = Some(rev)
|
|
|
}
|
|
|
}
|
|
|
found_by_prefix
|
|
|
.ok_or_else(|| RevlogError::InvalidRevision(format!("{:x}", node)))
|
|
|
}
|
|
|
|
|
|
pub fn get_offsets(&self) -> RwLockReadGuard<Option<Vec<usize>>> {
|
|
|
assert!(self.is_inline());
|
|
|
{
|
|
|
// Wrap in a block to drop the read guard
|
|
|
let mut offsets = self.offsets.write().unwrap();
|
|
|
if offsets.is_none() {
|
|
|
offsets.replace(inline_scan(&self.bytes.bytes).1);
|
|
|
}
|
|
|
}
|
|
|
self.offsets.read().unwrap()
|
|
|
}
|
|
|
|
|
|
pub fn get_offsets_mut(&mut self) -> RwLockWriteGuard<Option<Vec<usize>>> {
|
|
|
assert!(self.is_inline());
|
|
|
let mut offsets = self.offsets.write().unwrap();
|
|
|
if offsets.is_none() {
|
|
|
offsets.replace(inline_scan(&self.bytes.bytes).1);
|
|
|
}
|
|
|
offsets
|
|
|
}
|
|
|
|
|
|
/// Returns `true` if the `Index` has zero `entries`.
|
|
|
pub fn is_empty(&self) -> bool {
|
|
|
self.len() == 0
|
|
|
}
|
|
|
|
|
|
/// Return the index entry corresponding to the given revision or `None`
|
|
|
/// for [`NULL_REVISION`]
|
|
|
///
|
|
|
/// The specified revision being of the checked type, it always exists
|
|
|
/// if it was validated by this index.
|
|
|
#[inline(always)]
|
|
|
pub fn get_entry(&self, rev: Revision) -> Option<IndexEntry> {
|
|
|
if rev == NULL_REVISION {
|
|
|
return None;
|
|
|
}
|
|
|
if rev.0 == 0 {
|
|
|
Some(IndexEntry {
|
|
|
bytes: &self.bytes.first_entry[..],
|
|
|
})
|
|
|
} else {
|
|
|
Some(if self.is_inline() {
|
|
|
self.get_entry_inline(rev)
|
|
|
} else {
|
|
|
self.get_entry_separated(rev)
|
|
|
})
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Return the binary content of the index entry for the given revision
|
|
|
///
|
|
|
/// See [`Self::get_entry`] for cases when `None` is returned.
|
|
|
pub fn entry_binary(&self, rev: Revision) -> Option<&[u8]> {
|
|
|
self.get_entry(rev).map(|e| {
|
|
|
let bytes = e.as_bytes();
|
|
|
if rev.0 == 0 {
|
|
|
&bytes[4..]
|
|
|
} else {
|
|
|
bytes
|
|
|
}
|
|
|
})
|
|
|
}
|
|
|
|
|
|
pub fn entry_as_params(
|
|
|
&self,
|
|
|
rev: UncheckedRevision,
|
|
|
) -> Option<RevisionDataParams> {
|
|
|
let rev = self.check_revision(rev)?;
|
|
|
self.get_entry(rev).map(|e| RevisionDataParams {
|
|
|
flags: e.flags(),
|
|
|
data_offset: if rev.0 == 0 && !self.bytes.is_new() {
|
|
|
e.flags() as u64
|
|
|
} else {
|
|
|
e.raw_offset()
|
|
|
},
|
|
|
data_compressed_length: e
|
|
|
.compressed_len()
|
|
|
.try_into()
|
|
|
.unwrap_or_else(|_| {
|
|
|
// Python's `unionrepo` sets the compressed length to
|
|
|
// be `-1` (or `u32::MAX` if
|
|
|
// transmuted to `u32`) because it
|
|
|
// cannot know the correct compressed length of a given
|
|
|
// revision. I'm not sure if this is true, but having
|
|
|
// this edge case won't hurt
|
|
|
// other use cases, let's handle it.
|
|
|
assert_eq!(e.compressed_len(), u32::MAX);
|
|
|
NULL_REVISION.0
|
|
|
}),
|
|
|
data_uncompressed_length: e.uncompressed_len(),
|
|
|
data_delta_base: e.base_revision_or_base_of_delta_chain().0,
|
|
|
link_rev: e.link_revision().0,
|
|
|
parent_rev_1: e.p1().0,
|
|
|
parent_rev_2: e.p2().0,
|
|
|
node_id: e.hash().as_bytes().try_into().unwrap(),
|
|
|
..Default::default()
|
|
|
})
|
|
|
}
|
|
|
|
|
|
fn get_entry_inline(&self, rev: Revision) -> IndexEntry {
|
|
|
let offsets = &self.get_offsets();
|
|
|
let offsets = offsets.as_ref().expect("inline should have offsets");
|
|
|
let start = offsets[rev.0 as usize];
|
|
|
let end = start + INDEX_ENTRY_SIZE;
|
|
|
let bytes = &self.bytes[start..end];
|
|
|
|
|
|
IndexEntry { bytes }
|
|
|
}
|
|
|
|
|
|
fn get_entry_separated(&self, rev: Revision) -> IndexEntry {
|
|
|
let start = rev.0 as usize * INDEX_ENTRY_SIZE;
|
|
|
let end = start + INDEX_ENTRY_SIZE;
|
|
|
let bytes = &self.bytes[start..end];
|
|
|
|
|
|
IndexEntry { bytes }
|
|
|
}
|
|
|
|
|
|
fn null_entry(&self) -> IndexEntry {
|
|
|
IndexEntry {
|
|
|
bytes: &[0; INDEX_ENTRY_SIZE],
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Return the head revisions of this index
|
|
|
pub fn head_revs(&self) -> Result<Vec<Revision>, GraphError> {
|
|
|
self.head_revs_advanced(&HashSet::new(), None, false)
|
|
|
.map(|h| h.unwrap())
|
|
|
}
|
|
|
|
|
|
/// Return the head revisions of this index
|
|
|
pub fn head_revs_advanced(
|
|
|
&self,
|
|
|
filtered_revs: &HashSet<Revision>,
|
|
|
stop_rev: Option<Revision>,
|
|
|
py_shortcut: bool,
|
|
|
) -> Result<Option<Vec<Revision>>, GraphError> {
|
|
|
{
|
|
|
let guard = self
|
|
|
.head_revs
|
|
|
.read()
|
|
|
.expect("RwLock on Index.head_revs should not be poisoned");
|
|
|
let self_head_revs = &guard.0;
|
|
|
let self_filtered_revs = &guard.1;
|
|
|
if !self_head_revs.is_empty()
|
|
|
&& filtered_revs == self_filtered_revs
|
|
|
&& stop_rev.is_none()
|
|
|
{
|
|
|
if py_shortcut {
|
|
|
// Don't copy the revs since we've already cached them
|
|
|
// on the Python side.
|
|
|
return Ok(None);
|
|
|
} else {
|
|
|
return Ok(Some(self_head_revs.to_owned()));
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
let (as_vec, cachable) = if self.is_empty() {
|
|
|
(vec![NULL_REVISION], true)
|
|
|
} else {
|
|
|
let length: usize = match stop_rev {
|
|
|
Some(r) => r.0 as usize,
|
|
|
None => self.len(),
|
|
|
};
|
|
|
let cachable = self.len() == length;
|
|
|
let mut not_heads = bitvec![0; length];
|
|
|
dagops::retain_heads_fast(
|
|
|
self,
|
|
|
not_heads.as_mut_bitslice(),
|
|
|
filtered_revs,
|
|
|
)?;
|
|
|
(
|
|
|
not_heads
|
|
|
.into_iter()
|
|
|
.enumerate()
|
|
|
.filter_map(|(idx, is_not_head)| {
|
|
|
if is_not_head {
|
|
|
None
|
|
|
} else {
|
|
|
Some(Revision(idx as BaseRevision))
|
|
|
}
|
|
|
})
|
|
|
.collect(),
|
|
|
cachable,
|
|
|
)
|
|
|
};
|
|
|
if cachable {
|
|
|
*self
|
|
|
.head_revs
|
|
|
.write()
|
|
|
.expect("RwLock on Index.head_revs should not be poisoned") =
|
|
|
(as_vec.to_owned(), filtered_revs.to_owned());
|
|
|
}
|
|
|
Ok(Some(as_vec))
|
|
|
}
|
|
|
|
|
|
/// Python-specific shortcut to save on PyList creation
|
|
|
pub fn head_revs_shortcut(
|
|
|
&self,
|
|
|
) -> Result<Option<Vec<Revision>>, GraphError> {
|
|
|
self.head_revs_advanced(&HashSet::new(), None, true)
|
|
|
}
|
|
|
|
|
|
/// Return the heads removed and added by advancing from `begin` to `end`.
|
|
|
/// In revset language, we compute:
|
|
|
/// - `heads(:begin)-heads(:end)`
|
|
|
/// - `heads(:end)-heads(:begin)`
|
|
|
pub fn head_revs_diff(
|
|
|
&self,
|
|
|
begin: Revision,
|
|
|
end: Revision,
|
|
|
) -> Result<(Vec<Revision>, Vec<Revision>), GraphError> {
|
|
|
let mut heads_added = vec![];
|
|
|
let mut heads_removed = vec![];
|
|
|
|
|
|
let mut acc = HashSet::new();
|
|
|
let Revision(begin) = begin;
|
|
|
let Revision(end) = end;
|
|
|
let mut i = end;
|
|
|
|
|
|
while i > begin {
|
|
|
// acc invariant:
|
|
|
// `j` is in the set iff `j <= i` and it has children
|
|
|
// among `i+1..end` (inclusive)
|
|
|
if !acc.remove(&i) {
|
|
|
heads_added.push(Revision(i));
|
|
|
}
|
|
|
for Revision(parent) in self.parents(Revision(i))? {
|
|
|
acc.insert(parent);
|
|
|
}
|
|
|
i -= 1;
|
|
|
}
|
|
|
|
|
|
// At this point `acc` contains old revisions that gained new children.
|
|
|
// We need to check if they had any children before. If not, those
|
|
|
// revisions are the removed heads.
|
|
|
while !acc.is_empty() {
|
|
|
// acc invariant:
|
|
|
// `j` is in the set iff `j <= i` and it has children
|
|
|
// among `begin+1..end`, but not among `i+1..begin` (inclusive)
|
|
|
|
|
|
assert!(i >= -1); // yes, `-1` can also be a head if the repo is empty
|
|
|
if acc.remove(&i) {
|
|
|
heads_removed.push(Revision(i));
|
|
|
}
|
|
|
for Revision(parent) in self.parents(Revision(i))? {
|
|
|
acc.remove(&parent);
|
|
|
}
|
|
|
i -= 1;
|
|
|
}
|
|
|
|
|
|
Ok((heads_removed, heads_added))
|
|
|
}
|
|
|
|
|
|
/// Obtain the delta chain for a revision.
|
|
|
///
|
|
|
/// `stop_rev` specifies a revision to stop at. If not specified, we
|
|
|
/// stop at the base of the chain.
|
|
|
///
|
|
|
/// Returns a 2-tuple of (chain, stopped) where `chain` is a vec of
|
|
|
/// revs in ascending order and `stopped` is a bool indicating whether
|
|
|
/// `stoprev` was hit.
|
|
|
pub fn delta_chain(
|
|
|
&self,
|
|
|
rev: Revision,
|
|
|
stop_rev: Option<Revision>,
|
|
|
using_general_delta: Option<bool>,
|
|
|
) -> Result<(Vec<Revision>, bool), HgError> {
|
|
|
let mut current_rev = rev;
|
|
|
let mut entry = self.get_entry(rev).unwrap();
|
|
|
let mut chain = vec![];
|
|
|
let using_general_delta =
|
|
|
using_general_delta.unwrap_or_else(|| self.uses_generaldelta());
|
|
|
while current_rev.0 != entry.base_revision_or_base_of_delta_chain().0
|
|
|
&& stop_rev.map(|r| r != current_rev).unwrap_or(true)
|
|
|
{
|
|
|
chain.push(current_rev);
|
|
|
let new_rev = if using_general_delta {
|
|
|
entry.base_revision_or_base_of_delta_chain()
|
|
|
} else {
|
|
|
UncheckedRevision(current_rev.0 - 1)
|
|
|
};
|
|
|
current_rev = self.check_revision(new_rev).ok_or_else(|| {
|
|
|
HgError::corrupted(format!("Revision {new_rev} out of range"))
|
|
|
})?;
|
|
|
if current_rev.0 == NULL_REVISION.0 {
|
|
|
break;
|
|
|
}
|
|
|
entry = self.get_entry(current_rev).unwrap()
|
|
|
}
|
|
|
|
|
|
let stopped = if stop_rev.map(|r| current_rev == r).unwrap_or(false) {
|
|
|
true
|
|
|
} else {
|
|
|
chain.push(current_rev);
|
|
|
false
|
|
|
};
|
|
|
chain.reverse();
|
|
|
Ok((chain, stopped))
|
|
|
}
|
|
|
|
|
|
pub fn find_snapshots(
|
|
|
&self,
|
|
|
start_rev: UncheckedRevision,
|
|
|
end_rev: UncheckedRevision,
|
|
|
cache: &mut impl SnapshotsCache,
|
|
|
) -> Result<(), RevlogError> {
|
|
|
let mut start_rev = start_rev.0;
|
|
|
let mut end_rev = end_rev.0;
|
|
|
end_rev += 1;
|
|
|
let len = self.len().try_into().unwrap();
|
|
|
if end_rev > len {
|
|
|
end_rev = len;
|
|
|
}
|
|
|
if start_rev < 0 {
|
|
|
start_rev = 0;
|
|
|
}
|
|
|
for rev in start_rev..end_rev {
|
|
|
if !self.is_snapshot_unchecked(Revision(rev))? {
|
|
|
continue;
|
|
|
}
|
|
|
let mut base = self
|
|
|
.get_entry(Revision(rev))
|
|
|
.unwrap()
|
|
|
.base_revision_or_base_of_delta_chain();
|
|
|
if base.0 == rev {
|
|
|
base = NULL_REVISION.into();
|
|
|
}
|
|
|
cache.insert_for(base.0, rev)?;
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
fn clear_head_revs(&self) {
|
|
|
self.head_revs
|
|
|
.write()
|
|
|
.expect("RwLock on Index.head_revs should not be poisoined")
|
|
|
.0
|
|
|
.clear()
|
|
|
}
|
|
|
|
|
|
/// TODO move this to the trait probably, along with other things
|
|
|
pub fn append(
|
|
|
&mut self,
|
|
|
revision_data: RevisionDataParams,
|
|
|
) -> Result<(), RevlogError> {
|
|
|
revision_data.validate()?;
|
|
|
let entry_v1 = revision_data.into_v1();
|
|
|
let entry_bytes = entry_v1.as_bytes();
|
|
|
if self.bytes.len() == 0 {
|
|
|
self.bytes.first_entry[INDEX_HEADER_SIZE..].copy_from_slice(
|
|
|
&entry_bytes[INDEX_HEADER_SIZE..INDEX_ENTRY_SIZE],
|
|
|
)
|
|
|
}
|
|
|
if self.is_inline() {
|
|
|
let new_offset = self.bytes.len();
|
|
|
if let Some(offsets) = &mut *self.get_offsets_mut() {
|
|
|
offsets.push(new_offset)
|
|
|
}
|
|
|
}
|
|
|
self.bytes.added.extend(entry_bytes);
|
|
|
self.clear_head_revs();
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
pub fn pack_header(&self, header: i32) -> [u8; 4] {
|
|
|
header.to_be_bytes()
|
|
|
}
|
|
|
|
|
|
pub fn remove(&mut self, rev: Revision) -> Result<(), RevlogError> {
|
|
|
let offsets = if self.is_inline() {
|
|
|
self.get_offsets().clone()
|
|
|
} else {
|
|
|
None
|
|
|
};
|
|
|
self.bytes.remove(rev, offsets.as_deref())?;
|
|
|
if self.is_inline() {
|
|
|
if let Some(offsets) = &mut *self.get_offsets_mut() {
|
|
|
offsets.truncate(rev.0 as usize)
|
|
|
}
|
|
|
}
|
|
|
self.clear_head_revs();
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
pub fn clear_caches(&self) {
|
|
|
// We need to get the 'inline' value from Python at init and use this
|
|
|
// instead of offsets to determine whether we're inline since we might
|
|
|
// clear caches. This implies re-populating the offsets on-demand.
|
|
|
*self
|
|
|
.offsets
|
|
|
.write()
|
|
|
.expect("RwLock on Index.offsets should not be poisoed") = None;
|
|
|
self.clear_head_revs();
|
|
|
}
|
|
|
|
|
|
/// Unchecked version of `is_snapshot`.
|
|
|
/// Assumes the caller checked that `rev` is within a valid revision range.
|
|
|
pub fn is_snapshot_unchecked(
|
|
|
&self,
|
|
|
mut rev: Revision,
|
|
|
) -> Result<bool, RevlogError> {
|
|
|
while rev.0 >= 0 {
|
|
|
let entry = self.get_entry(rev).unwrap();
|
|
|
let mut base = entry.base_revision_or_base_of_delta_chain().0;
|
|
|
if base == rev.0 {
|
|
|
base = NULL_REVISION.0;
|
|
|
}
|
|
|
if base == NULL_REVISION.0 {
|
|
|
return Ok(true);
|
|
|
}
|
|
|
let [mut p1, mut p2] = self
|
|
|
.parents(rev)
|
|
|
.map_err(|e| RevlogError::InvalidRevision(e.to_string()))?;
|
|
|
while let Some(p1_entry) = self.get_entry(p1) {
|
|
|
if p1_entry.compressed_len() != 0 || p1.0 == 0 {
|
|
|
break;
|
|
|
}
|
|
|
let parent_base =
|
|
|
p1_entry.base_revision_or_base_of_delta_chain();
|
|
|
if parent_base.0 == p1.0 {
|
|
|
break;
|
|
|
}
|
|
|
p1 = self.check_revision(parent_base).ok_or(
|
|
|
RevlogError::InvalidRevision(parent_base.to_string()),
|
|
|
)?;
|
|
|
}
|
|
|
while let Some(p2_entry) = self.get_entry(p2) {
|
|
|
if p2_entry.compressed_len() != 0 || p2.0 == 0 {
|
|
|
break;
|
|
|
}
|
|
|
let parent_base =
|
|
|
p2_entry.base_revision_or_base_of_delta_chain();
|
|
|
if parent_base.0 == p2.0 {
|
|
|
break;
|
|
|
}
|
|
|
p2 = self.check_revision(parent_base).ok_or(
|
|
|
RevlogError::InvalidRevision(parent_base.to_string()),
|
|
|
)?;
|
|
|
}
|
|
|
if base == p1.0 || base == p2.0 {
|
|
|
return Ok(false);
|
|
|
}
|
|
|
rev = self
|
|
|
.check_revision(base.into())
|
|
|
.ok_or(RevlogError::InvalidRevision(base.to_string()))?;
|
|
|
}
|
|
|
Ok(rev == NULL_REVISION)
|
|
|
}
|
|
|
|
|
|
/// Return whether the given revision is a snapshot. Returns an error if
|
|
|
/// `rev` is not within a valid revision range.
|
|
|
pub fn is_snapshot(
|
|
|
&self,
|
|
|
rev: UncheckedRevision,
|
|
|
) -> Result<bool, RevlogError> {
|
|
|
let rev = self
|
|
|
.check_revision(rev)
|
|
|
.ok_or_else(|| RevlogError::corrupted("test"))?;
|
|
|
self.is_snapshot_unchecked(rev)
|
|
|
}
|
|
|
|
|
|
/// Slice revs to reduce the amount of unrelated data to be read from disk.
|
|
|
///
|
|
|
/// The index is sliced into groups that should be read in one time.
|
|
|
///
|
|
|
/// The initial chunk is sliced until the overall density
|
|
|
/// (payload/chunks-span ratio) is above `target_density`.
|
|
|
/// No gap smaller than `min_gap_size` is skipped.
|
|
|
pub fn slice_chunk_to_density(
|
|
|
&self,
|
|
|
revs: &[Revision],
|
|
|
target_density: f64,
|
|
|
min_gap_size: usize,
|
|
|
) -> Vec<Vec<Revision>> {
|
|
|
if revs.is_empty() {
|
|
|
return vec![];
|
|
|
}
|
|
|
if revs.len() == 1 {
|
|
|
return vec![revs.to_owned()];
|
|
|
}
|
|
|
let delta_chain_span = self.segment_span(revs);
|
|
|
if delta_chain_span < min_gap_size {
|
|
|
return vec![revs.to_owned()];
|
|
|
}
|
|
|
let entries: Vec<_> = revs
|
|
|
.iter()
|
|
|
.map(|r| {
|
|
|
(*r, self.get_entry(*r).unwrap_or_else(|| self.null_entry()))
|
|
|
})
|
|
|
.collect();
|
|
|
|
|
|
let mut read_data = delta_chain_span;
|
|
|
let chain_payload: u32 =
|
|
|
entries.iter().map(|(_r, e)| e.compressed_len()).sum();
|
|
|
let mut density = if delta_chain_span > 0 {
|
|
|
chain_payload as f64 / delta_chain_span as f64
|
|
|
} else {
|
|
|
1.0
|
|
|
};
|
|
|
|
|
|
if density >= target_density {
|
|
|
return vec![revs.to_owned()];
|
|
|
}
|
|
|
|
|
|
// Store the gaps in a heap to have them sorted by decreasing size
|
|
|
let mut gaps = Vec::new();
|
|
|
let mut previous_end = None;
|
|
|
|
|
|
for (i, (rev, entry)) in entries.iter().enumerate() {
|
|
|
let start = self.start(*rev, entry);
|
|
|
let length = entry.compressed_len();
|
|
|
|
|
|
// Skip empty revisions to form larger holes
|
|
|
if length == 0 {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
if let Some(end) = previous_end {
|
|
|
let gap_size = start - end;
|
|
|
// Only consider holes that are large enough
|
|
|
if gap_size > min_gap_size {
|
|
|
gaps.push((gap_size, i));
|
|
|
}
|
|
|
}
|
|
|
previous_end = Some(start + length as usize);
|
|
|
}
|
|
|
if gaps.is_empty() {
|
|
|
return vec![revs.to_owned()];
|
|
|
}
|
|
|
// sort the gaps to pop them from largest to small
|
|
|
gaps.sort_unstable();
|
|
|
|
|
|
// Collect the indices of the largest holes until
|
|
|
// the density is acceptable
|
|
|
let mut selected = vec![];
|
|
|
while let Some((gap_size, gap_id)) = gaps.pop() {
|
|
|
if density >= target_density {
|
|
|
break;
|
|
|
}
|
|
|
selected.push(gap_id);
|
|
|
|
|
|
// The gap sizes are stored as negatives to be sorted decreasingly
|
|
|
// by the heap
|
|
|
read_data -= gap_size;
|
|
|
density = if read_data > 0 {
|
|
|
chain_payload as f64 / read_data as f64
|
|
|
} else {
|
|
|
1.0
|
|
|
};
|
|
|
if density >= target_density {
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
selected.sort_unstable();
|
|
|
selected.push(revs.len());
|
|
|
|
|
|
// Cut the revs at collected indices
|
|
|
let mut previous_idx = 0;
|
|
|
let mut chunks = vec![];
|
|
|
for idx in selected {
|
|
|
let chunk = self.trim_chunk(&entries, previous_idx, idx);
|
|
|
if !chunk.is_empty() {
|
|
|
chunks.push(chunk.iter().map(|(rev, _entry)| *rev).collect());
|
|
|
}
|
|
|
previous_idx = idx;
|
|
|
}
|
|
|
let chunk = self.trim_chunk(&entries, previous_idx, entries.len());
|
|
|
if !chunk.is_empty() {
|
|
|
chunks.push(chunk.iter().map(|(rev, _entry)| *rev).collect());
|
|
|
}
|
|
|
|
|
|
chunks
|
|
|
}
|
|
|
|
|
|
/// Get the byte span of a segment of sorted revisions.
|
|
|
///
|
|
|
/// Occurrences of [`NULL_REVISION`] are ignored at the beginning of
|
|
|
/// the `revs` segment.
|
|
|
///
|
|
|
/// panics:
|
|
|
/// - if `revs` is empty or only made of `NULL_REVISION`
|
|
|
/// - if cannot retrieve entry for the last or first not null element of
|
|
|
/// `revs`.
|
|
|
fn segment_span(&self, revs: &[Revision]) -> usize {
|
|
|
if revs.is_empty() {
|
|
|
return 0;
|
|
|
}
|
|
|
let last_rev = revs[revs.len() - 1];
|
|
|
let last_entry = &self.get_entry(last_rev).unwrap();
|
|
|
let end = last_entry.offset() + last_entry.compressed_len() as usize;
|
|
|
let first_rev = revs.iter().find(|r| r.0 != NULL_REVISION.0).unwrap();
|
|
|
let first_entry = self.get_entry(*first_rev).unwrap();
|
|
|
let start = first_entry.offset();
|
|
|
end - start
|
|
|
}
|
|
|
|
|
|
/// Returns `&revs[startidx..endidx]` without empty trailing revs
|
|
|
fn trim_chunk<'a>(
|
|
|
&'a self,
|
|
|
revs: &'a [(Revision, IndexEntry)],
|
|
|
start: usize,
|
|
|
mut end: usize,
|
|
|
) -> &'a [(Revision, IndexEntry)] {
|
|
|
// Trim empty revs at the end, except the very first rev of a chain
|
|
|
let last_rev = revs[end - 1].0;
|
|
|
if last_rev.0 < self.len() as BaseRevision {
|
|
|
while end > 1
|
|
|
&& end > start
|
|
|
&& revs[end - 1].1.compressed_len() == 0
|
|
|
{
|
|
|
end -= 1
|
|
|
}
|
|
|
}
|
|
|
&revs[start..end]
|
|
|
}
|
|
|
|
|
|
/// Computes the set of revisions for each non-public phase from `roots`,
|
|
|
/// which are the last known roots for each non-public phase.
|
|
|
pub fn compute_phases_map_sets(
|
|
|
&self,
|
|
|
roots: HashMap<Phase, Vec<Revision>>,
|
|
|
) -> Result<(usize, RootsPerPhase), GraphError> {
|
|
|
let mut phases = vec![Phase::Public; self.len()];
|
|
|
let mut min_phase_rev = NULL_REVISION;
|
|
|
|
|
|
for phase in Phase::non_public_phases() {
|
|
|
if let Some(phase_roots) = roots.get(phase) {
|
|
|
let min_rev =
|
|
|
self.add_roots_get_min(phase_roots, &mut phases, *phase);
|
|
|
if min_rev != NULL_REVISION
|
|
|
&& (min_phase_rev == NULL_REVISION
|
|
|
|| min_rev < min_phase_rev)
|
|
|
{
|
|
|
min_phase_rev = min_rev;
|
|
|
}
|
|
|
} else {
|
|
|
continue;
|
|
|
};
|
|
|
}
|
|
|
let mut phase_sets: RootsPerPhase = Default::default();
|
|
|
|
|
|
if min_phase_rev == NULL_REVISION {
|
|
|
min_phase_rev = Revision(self.len() as BaseRevision);
|
|
|
}
|
|
|
|
|
|
for rev in min_phase_rev.0..self.len() as BaseRevision {
|
|
|
let rev = Revision(rev);
|
|
|
let [p1, p2] = self.parents(rev)?;
|
|
|
|
|
|
if p1.0 >= 0 && phases[p1.0 as usize] > phases[rev.0 as usize] {
|
|
|
phases[rev.0 as usize] = phases[p1.0 as usize];
|
|
|
}
|
|
|
if p2.0 >= 0 && phases[p2.0 as usize] > phases[rev.0 as usize] {
|
|
|
phases[rev.0 as usize] = phases[p2.0 as usize];
|
|
|
}
|
|
|
let set = match phases[rev.0 as usize] {
|
|
|
Phase::Public => continue,
|
|
|
phase => &mut phase_sets[phase as usize - 1],
|
|
|
};
|
|
|
set.push(rev);
|
|
|
}
|
|
|
|
|
|
Ok((self.len(), phase_sets))
|
|
|
}
|
|
|
|
|
|
fn add_roots_get_min(
|
|
|
&self,
|
|
|
phase_roots: &[Revision],
|
|
|
phases: &mut [Phase],
|
|
|
phase: Phase,
|
|
|
) -> Revision {
|
|
|
let mut min_rev = NULL_REVISION;
|
|
|
|
|
|
for root in phase_roots {
|
|
|
phases[root.0 as usize] = phase;
|
|
|
if min_rev == NULL_REVISION || min_rev > *root {
|
|
|
min_rev = *root;
|
|
|
}
|
|
|
}
|
|
|
min_rev
|
|
|
}
|
|
|
|
|
|
/// Return `(heads(::(<roots> and <roots>::<heads>)))`
|
|
|
/// If `include_path` is `true`, return `(<roots>::<heads>)`."""
|
|
|
///
|
|
|
/// `min_root` and `roots` are unchecked since they are just used as
|
|
|
/// a bound or for comparison and don't need to represent a valid revision.
|
|
|
/// In practice, the only invalid revision passed is the working directory
|
|
|
/// revision ([`i32::MAX`]).
|
|
|
pub fn reachable_roots(
|
|
|
&self,
|
|
|
min_root: UncheckedRevision,
|
|
|
mut heads: Vec<Revision>,
|
|
|
roots: HashSet<UncheckedRevision>,
|
|
|
include_path: bool,
|
|
|
) -> Result<HashSet<Revision>, GraphError> {
|
|
|
if roots.is_empty() {
|
|
|
return Ok(HashSet::new());
|
|
|
}
|
|
|
let mut reachable = HashSet::new();
|
|
|
let mut seen = HashMap::new();
|
|
|
|
|
|
while let Some(rev) = heads.pop() {
|
|
|
if roots.contains(&rev.into()) {
|
|
|
reachable.insert(rev);
|
|
|
if !include_path {
|
|
|
continue;
|
|
|
}
|
|
|
}
|
|
|
let parents = self.parents(rev)?;
|
|
|
seen.insert(rev, parents);
|
|
|
for parent in parents {
|
|
|
if parent.0 >= min_root.0 && !seen.contains_key(&parent) {
|
|
|
heads.push(parent);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
if !include_path {
|
|
|
return Ok(reachable);
|
|
|
}
|
|
|
let mut revs: Vec<_> = seen.keys().collect();
|
|
|
revs.sort_unstable();
|
|
|
for rev in revs {
|
|
|
for parent in seen[rev] {
|
|
|
if reachable.contains(&parent) {
|
|
|
reachable.insert(*rev);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
Ok(reachable)
|
|
|
}
|
|
|
|
|
|
/// Given a (possibly overlapping) set of revs, return all the
|
|
|
/// common ancestors heads: `heads(::args[0] and ::a[1] and ...)`
|
|
|
pub fn common_ancestor_heads(
|
|
|
&self,
|
|
|
revisions: &[Revision],
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
// given that revisions is expected to be small, we find this shortcut
|
|
|
// potentially acceptable, especially given that `hg-cpython` could
|
|
|
// very much bypass this, constructing a vector of unique values from
|
|
|
// the onset.
|
|
|
let as_set: HashSet<Revision> = revisions.iter().copied().collect();
|
|
|
// Besides deduplicating, the C version also implements the shortcut
|
|
|
// for `NULL_REVISION`:
|
|
|
if as_set.contains(&NULL_REVISION) {
|
|
|
return Ok(vec![]);
|
|
|
}
|
|
|
|
|
|
let revisions: Vec<Revision> = as_set.into_iter().collect();
|
|
|
|
|
|
if revisions.len() < 8 {
|
|
|
self.find_gca_candidates::<u8>(&revisions)
|
|
|
} else if revisions.len() < 64 {
|
|
|
self.find_gca_candidates::<u64>(&revisions)
|
|
|
} else {
|
|
|
self.find_gca_candidates::<NonStaticPoisonableBitSet>(&revisions)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub fn ancestors(
|
|
|
&self,
|
|
|
revisions: &[Revision],
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
self.find_deepest_revs(&self.common_ancestor_heads(revisions)?)
|
|
|
}
|
|
|
|
|
|
/// Given a disjoint set of revs, return all candidates for the
|
|
|
/// greatest common ancestor. In revset notation, this is the set
|
|
|
/// `heads(::a and ::b and ...)`
|
|
|
fn find_gca_candidates<BS: PoisonableBitSet + Clone>(
|
|
|
&self,
|
|
|
revs: &[Revision],
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
if revs.is_empty() {
|
|
|
return Ok(vec![]);
|
|
|
}
|
|
|
let revcount = revs.len();
|
|
|
let mut candidates = vec![];
|
|
|
let max_rev = revs.iter().max().unwrap();
|
|
|
|
|
|
let mut seen = BS::vec_of_empty(revs.len(), (max_rev.0 + 1) as usize);
|
|
|
|
|
|
for (idx, rev) in revs.iter().enumerate() {
|
|
|
seen[rev.0 as usize].add(idx);
|
|
|
}
|
|
|
let mut current_rev = *max_rev;
|
|
|
// Number of revisions whose inspection in the main loop
|
|
|
// will give a result or trigger inspection of other revisions
|
|
|
let mut interesting = revcount;
|
|
|
|
|
|
// The algorithm works on a vector of bit sets, indexed by revision
|
|
|
// numbers and iterated on reverse order.
|
|
|
// An entry in this vector is poisoned if and only if the corresponding
|
|
|
// revision is a common, yet not maximal ancestor.
|
|
|
|
|
|
// The principle of the algorithm is as follows:
|
|
|
// For a revision `r`, when entering the loop, `seen[r]` is either
|
|
|
// poisoned or the sub set of `revs` of which `r` is an ancestor.
|
|
|
// In this sub set is full, then `r` is a solution and its parents
|
|
|
// have to be poisoned.
|
|
|
//
|
|
|
// At each iteration, the bit sets of the parents are updated by
|
|
|
// union with `seen[r]`.
|
|
|
// As we walk the index from the end, we are sure we have encountered
|
|
|
// all children of `r` before `r`, hence we know that `seen[r]` is
|
|
|
// fully computed.
|
|
|
//
|
|
|
// On top of that there are several optimizations that make reading
|
|
|
// less obvious than the comment above:
|
|
|
// - The `interesting` counter allows to break early
|
|
|
// - The loop starts from `max(revs)`
|
|
|
// - Early return in case it is detected that one of the incoming revs
|
|
|
// is a common ancestor of all of them.
|
|
|
while current_rev.0 >= 0 && interesting > 0 {
|
|
|
let current_seen = seen[current_rev.0 as usize].clone();
|
|
|
|
|
|
if current_seen.is_empty() {
|
|
|
current_rev = Revision(current_rev.0 - 1);
|
|
|
continue;
|
|
|
}
|
|
|
let mut poison = current_seen.is_poisoned();
|
|
|
if !poison {
|
|
|
interesting -= 1;
|
|
|
if current_seen.is_full_range(revcount) {
|
|
|
candidates.push(current_rev);
|
|
|
poison = true;
|
|
|
|
|
|
// Being a common ancestor, if `current_rev` is among
|
|
|
// the input revisions, it is *the* answer.
|
|
|
for rev in revs {
|
|
|
if *rev == current_rev {
|
|
|
return Ok(candidates);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
for parent in self.parents(current_rev)? {
|
|
|
if parent == NULL_REVISION {
|
|
|
continue;
|
|
|
}
|
|
|
let parent_seen = &mut seen[parent.0 as usize];
|
|
|
if poison {
|
|
|
// this block is logically equivalent to poisoning parent
|
|
|
// and counting it as non interesting if it
|
|
|
// has been seen before (hence counted then as interesting)
|
|
|
if !parent_seen.is_empty() && !parent_seen.is_poisoned() {
|
|
|
interesting -= 1;
|
|
|
}
|
|
|
parent_seen.poison();
|
|
|
} else {
|
|
|
if parent_seen.is_empty() {
|
|
|
interesting += 1;
|
|
|
}
|
|
|
parent_seen.union(¤t_seen);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
current_rev = Revision(current_rev.0 - 1);
|
|
|
}
|
|
|
|
|
|
Ok(candidates)
|
|
|
}
|
|
|
|
|
|
/// Given a disjoint set of revs, return the subset with the longest path
|
|
|
/// to the root.
|
|
|
fn find_deepest_revs(
|
|
|
&self,
|
|
|
revs: &[Revision],
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
// TODO replace this all with just comparing rank?
|
|
|
// Also, the original implementations in C/Python are cryptic, not
|
|
|
// even sure we actually need this?
|
|
|
if revs.len() <= 1 {
|
|
|
return Ok(revs.to_owned());
|
|
|
}
|
|
|
let max_rev = revs.iter().max().unwrap().0;
|
|
|
let mut interesting = HashMap::new();
|
|
|
let mut seen = vec![0; max_rev as usize + 1];
|
|
|
let mut depth = vec![0; max_rev as usize + 1];
|
|
|
let mut mapping = vec![];
|
|
|
let mut revs = revs.to_owned();
|
|
|
revs.sort_unstable();
|
|
|
|
|
|
for (idx, rev) in revs.iter().enumerate() {
|
|
|
depth[rev.0 as usize] = 1;
|
|
|
let shift = 1 << idx;
|
|
|
seen[rev.0 as usize] = shift;
|
|
|
interesting.insert(shift, 1);
|
|
|
mapping.push((shift, *rev));
|
|
|
}
|
|
|
|
|
|
let mut current_rev = Revision(max_rev);
|
|
|
while current_rev.0 >= 0 && interesting.len() > 1 {
|
|
|
let current_depth = depth[current_rev.0 as usize];
|
|
|
if current_depth == 0 {
|
|
|
current_rev = Revision(current_rev.0 - 1);
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
let current_seen = seen[current_rev.0 as usize];
|
|
|
for parent in self.parents(current_rev)? {
|
|
|
if parent == NULL_REVISION {
|
|
|
continue;
|
|
|
}
|
|
|
let parent_seen = seen[parent.0 as usize];
|
|
|
let parent_depth = depth[parent.0 as usize];
|
|
|
if parent_depth <= current_depth {
|
|
|
depth[parent.0 as usize] = current_depth + 1;
|
|
|
if parent_seen != current_seen {
|
|
|
*interesting.get_mut(¤t_seen).unwrap() += 1;
|
|
|
seen[parent.0 as usize] = current_seen;
|
|
|
if parent_seen != 0 {
|
|
|
let parent_interesting =
|
|
|
interesting.get_mut(&parent_seen).unwrap();
|
|
|
*parent_interesting -= 1;
|
|
|
if *parent_interesting == 0 {
|
|
|
interesting.remove(&parent_seen);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
} else if current_depth == parent_depth - 1 {
|
|
|
let either_seen = parent_seen | current_seen;
|
|
|
if either_seen == parent_seen {
|
|
|
continue;
|
|
|
}
|
|
|
seen[parent.0 as usize] = either_seen;
|
|
|
interesting
|
|
|
.entry(either_seen)
|
|
|
.and_modify(|v| *v += 1)
|
|
|
.or_insert(1);
|
|
|
*interesting.get_mut(&parent_seen).unwrap() -= 1;
|
|
|
if interesting[&parent_seen] == 0 {
|
|
|
interesting.remove(&parent_seen);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
*interesting.get_mut(¤t_seen).unwrap() -= 1;
|
|
|
if interesting[¤t_seen] == 0 {
|
|
|
interesting.remove(¤t_seen);
|
|
|
}
|
|
|
|
|
|
current_rev = Revision(current_rev.0 - 1);
|
|
|
}
|
|
|
|
|
|
if interesting.len() != 1 {
|
|
|
return Ok(vec![]);
|
|
|
}
|
|
|
let mask = interesting.keys().next().unwrap();
|
|
|
|
|
|
Ok(mapping
|
|
|
.into_iter()
|
|
|
.filter_map(|(shift, rev)| {
|
|
|
if (mask & shift) != 0 {
|
|
|
return Some(rev);
|
|
|
}
|
|
|
None
|
|
|
})
|
|
|
.collect())
|
|
|
}
|
|
|
|
|
|
/// Return the offset into the data corresponding to `rev` (in the index
|
|
|
/// file if inline, in the data file otherwise). `entry` must be the entry
|
|
|
/// for `rev`: the API is done this way to reduce the number of lookups
|
|
|
/// since we sometimes already have the entry, and because very few places
|
|
|
/// actually use this function.
|
|
|
#[inline(always)]
|
|
|
pub fn start(&self, rev: Revision, entry: &IndexEntry<'_>) -> usize {
|
|
|
#[cfg(debug_assertions)]
|
|
|
{
|
|
|
assert_eq!(&self.get_entry(rev).unwrap(), entry);
|
|
|
}
|
|
|
let offset = entry.offset();
|
|
|
if self.is_inline() {
|
|
|
offset + ((rev.0 as usize + 1) * INDEX_ENTRY_SIZE)
|
|
|
} else {
|
|
|
offset
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub(crate) fn make_null_entry(&self) -> IndexEntry<'_> {
|
|
|
IndexEntry {
|
|
|
bytes: b"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0 \
|
|
|
\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff \
|
|
|
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// The kind of functionality needed by find_gca_candidates
|
|
|
///
|
|
|
/// This is a bit mask which can be declared to be "poisoned", which callers
|
|
|
/// interpret to break out of some loops.
|
|
|
///
|
|
|
/// The maximum capacity of the bit mask is up to the actual implementation
|
|
|
trait PoisonableBitSet: Sized + PartialEq {
|
|
|
/// Return a vector of exactly n elements, initialized to be empty.
|
|
|
///
|
|
|
/// Optimization can vastly depend on implementation. Those being `Copy`
|
|
|
/// and having constant capacity typically can have a very simple
|
|
|
/// implementation.
|
|
|
fn vec_of_empty(sets_size: usize, vec_len: usize) -> Vec<Self>;
|
|
|
|
|
|
/// The size of the bit mask in memory
|
|
|
#[allow(unused)]
|
|
|
fn size(&self) -> usize;
|
|
|
|
|
|
/// The number of elements that can be represented in the set.
|
|
|
///
|
|
|
/// Another way to put it is that it is the highest integer `C` such that
|
|
|
/// the set is guaranteed to always be a subset of the integer range
|
|
|
/// `[0, C)`
|
|
|
#[allow(unused)]
|
|
|
fn capacity(&self) -> usize;
|
|
|
|
|
|
/// Declare `n` to belong to the set
|
|
|
fn add(&mut self, n: usize);
|
|
|
|
|
|
/// Declare `n` not to belong to the set
|
|
|
#[allow(unused)]
|
|
|
fn discard(&mut self, n: usize);
|
|
|
|
|
|
/// Replace this bit set by its union with other
|
|
|
fn union(&mut self, other: &Self);
|
|
|
|
|
|
/// Poison the bit set
|
|
|
///
|
|
|
/// Interpretation up to the caller
|
|
|
fn poison(&mut self);
|
|
|
|
|
|
/// Is the bit set poisoned?
|
|
|
///
|
|
|
/// Interpretation is up to the caller
|
|
|
fn is_poisoned(&self) -> bool;
|
|
|
|
|
|
/// Is the bit set empty?
|
|
|
fn is_empty(&self) -> bool;
|
|
|
|
|
|
/// return `true` if and only if the bit is the full range `[0, n)`
|
|
|
/// of integers
|
|
|
fn is_full_range(&self, n: usize) -> bool;
|
|
|
}
|
|
|
|
|
|
const U64_POISON: u64 = 1 << 63;
|
|
|
const U8_POISON: u8 = 1 << 7;
|
|
|
|
|
|
impl PoisonableBitSet for u64 {
|
|
|
fn vec_of_empty(_sets_size: usize, vec_len: usize) -> Vec<Self> {
|
|
|
vec![0u64; vec_len]
|
|
|
}
|
|
|
|
|
|
fn size(&self) -> usize {
|
|
|
8
|
|
|
}
|
|
|
|
|
|
fn capacity(&self) -> usize {
|
|
|
63
|
|
|
}
|
|
|
|
|
|
fn add(&mut self, n: usize) {
|
|
|
(*self) |= 1u64 << n;
|
|
|
}
|
|
|
|
|
|
fn discard(&mut self, n: usize) {
|
|
|
(*self) &= u64::MAX - (1u64 << n);
|
|
|
}
|
|
|
|
|
|
fn union(&mut self, other: &Self) {
|
|
|
if *self != *other {
|
|
|
(*self) |= *other;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
fn is_full_range(&self, n: usize) -> bool {
|
|
|
*self + 1 == (1u64 << n)
|
|
|
}
|
|
|
|
|
|
fn is_empty(&self) -> bool {
|
|
|
*self == 0
|
|
|
}
|
|
|
|
|
|
fn poison(&mut self) {
|
|
|
*self = U64_POISON;
|
|
|
}
|
|
|
|
|
|
fn is_poisoned(&self) -> bool {
|
|
|
// equality comparison would be tempting but would not resist
|
|
|
// operations after poisoning (even if these should be bogus).
|
|
|
*self >= U64_POISON
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl PoisonableBitSet for u8 {
|
|
|
fn vec_of_empty(_sets_size: usize, vec_len: usize) -> Vec<Self> {
|
|
|
vec![0; vec_len]
|
|
|
}
|
|
|
|
|
|
fn size(&self) -> usize {
|
|
|
1
|
|
|
}
|
|
|
|
|
|
fn capacity(&self) -> usize {
|
|
|
7
|
|
|
}
|
|
|
|
|
|
fn add(&mut self, n: usize) {
|
|
|
(*self) |= 1 << n;
|
|
|
}
|
|
|
|
|
|
fn discard(&mut self, n: usize) {
|
|
|
(*self) &= u8::MAX - (1 << n);
|
|
|
}
|
|
|
|
|
|
fn union(&mut self, other: &Self) {
|
|
|
if *self != *other {
|
|
|
(*self) |= *other;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
fn is_full_range(&self, n: usize) -> bool {
|
|
|
*self + 1 == (1 << n)
|
|
|
}
|
|
|
|
|
|
fn is_empty(&self) -> bool {
|
|
|
*self == 0
|
|
|
}
|
|
|
|
|
|
fn poison(&mut self) {
|
|
|
*self = U8_POISON;
|
|
|
}
|
|
|
|
|
|
fn is_poisoned(&self) -> bool {
|
|
|
// equality comparison would be tempting but would not resist
|
|
|
// operations after poisoning (even if these should be bogus).
|
|
|
*self >= U8_POISON
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// A poisonable bit set whose capacity is not known at compile time but
|
|
|
/// is constant after initial construction
|
|
|
///
|
|
|
/// This can be way further optimized if performance assessments (speed
|
|
|
/// and/or RAM) require it.
|
|
|
/// As far as RAM is concerned, for large vectors of these, the main problem
|
|
|
/// would be the repetition of set_size in each item. We would need a trait
|
|
|
/// to abstract over the idea of a vector of such bit sets to do better.
|
|
|
#[derive(Clone, PartialEq)]
|
|
|
struct NonStaticPoisonableBitSet {
|
|
|
set_size: usize,
|
|
|
bit_set: Vec<u64>,
|
|
|
}
|
|
|
|
|
|
/// Number of `u64` needed for a [`NonStaticPoisonableBitSet`] of given size
|
|
|
fn non_static_poisonable_inner_len(set_size: usize) -> usize {
|
|
|
1 + (set_size + 1) / 64
|
|
|
}
|
|
|
|
|
|
impl NonStaticPoisonableBitSet {
|
|
|
/// The index of the sub-bit set for the given n, and the index inside
|
|
|
/// the latter
|
|
|
fn index(&self, n: usize) -> (usize, usize) {
|
|
|
(n / 64, n % 64)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Mock implementation to ensure that the trait makes sense
|
|
|
impl PoisonableBitSet for NonStaticPoisonableBitSet {
|
|
|
fn vec_of_empty(set_size: usize, vec_len: usize) -> Vec<Self> {
|
|
|
let tmpl = Self {
|
|
|
set_size,
|
|
|
bit_set: vec![0u64; non_static_poisonable_inner_len(set_size)],
|
|
|
};
|
|
|
vec![tmpl; vec_len]
|
|
|
}
|
|
|
|
|
|
fn size(&self) -> usize {
|
|
|
8 + self.bit_set.len() * 8
|
|
|
}
|
|
|
|
|
|
fn capacity(&self) -> usize {
|
|
|
self.set_size
|
|
|
}
|
|
|
|
|
|
fn add(&mut self, n: usize) {
|
|
|
let (sub_bs, bit_pos) = self.index(n);
|
|
|
self.bit_set[sub_bs] |= 1 << bit_pos
|
|
|
}
|
|
|
|
|
|
fn discard(&mut self, n: usize) {
|
|
|
let (sub_bs, bit_pos) = self.index(n);
|
|
|
self.bit_set[sub_bs] |= u64::MAX - (1 << bit_pos)
|
|
|
}
|
|
|
|
|
|
fn union(&mut self, other: &Self) {
|
|
|
assert!(
|
|
|
self.set_size == other.set_size,
|
|
|
"Binary operations on bit sets can only be done on same size"
|
|
|
);
|
|
|
for i in 0..self.bit_set.len() - 1 {
|
|
|
self.bit_set[i] |= other.bit_set[i]
|
|
|
}
|
|
|
}
|
|
|
|
|
|
fn is_full_range(&self, n: usize) -> bool {
|
|
|
let (sub_bs, bit_pos) = self.index(n);
|
|
|
self.bit_set[..sub_bs].iter().all(|bs| *bs == u64::MAX)
|
|
|
&& self.bit_set[sub_bs] == (1 << (bit_pos + 1)) - 1
|
|
|
}
|
|
|
|
|
|
fn is_empty(&self) -> bool {
|
|
|
self.bit_set.iter().all(|bs| *bs == 0u64)
|
|
|
}
|
|
|
|
|
|
fn poison(&mut self) {
|
|
|
let (sub_bs, bit_pos) = self.index(self.set_size);
|
|
|
self.bit_set[sub_bs] = 1 << bit_pos;
|
|
|
}
|
|
|
|
|
|
fn is_poisoned(&self) -> bool {
|
|
|
let (sub_bs, bit_pos) = self.index(self.set_size);
|
|
|
self.bit_set[sub_bs] >= 1 << bit_pos
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Set of roots of all non-public phases
|
|
|
pub type RootsPerPhase = [Vec<Revision>; Phase::non_public_phases().len()];
|
|
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Ord, PartialOrd, Hash)]
|
|
|
pub enum Phase {
|
|
|
Public = 0,
|
|
|
Draft = 1,
|
|
|
Secret = 2,
|
|
|
Archived = 3,
|
|
|
Internal = 4,
|
|
|
}
|
|
|
|
|
|
impl TryFrom<usize> for Phase {
|
|
|
type Error = RevlogError;
|
|
|
|
|
|
fn try_from(value: usize) -> Result<Self, Self::Error> {
|
|
|
Ok(match value {
|
|
|
0 => Self::Public,
|
|
|
1 => Self::Draft,
|
|
|
2 => Self::Secret,
|
|
|
32 => Self::Archived,
|
|
|
96 => Self::Internal,
|
|
|
v => {
|
|
|
return Err(RevlogError::corrupted(format!(
|
|
|
"invalid phase value {}",
|
|
|
v
|
|
|
)))
|
|
|
}
|
|
|
})
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl Phase {
|
|
|
pub const fn all_phases() -> &'static [Self] {
|
|
|
&[
|
|
|
Self::Public,
|
|
|
Self::Draft,
|
|
|
Self::Secret,
|
|
|
Self::Archived,
|
|
|
Self::Internal,
|
|
|
]
|
|
|
}
|
|
|
pub const fn non_public_phases() -> &'static [Self] {
|
|
|
&[Self::Draft, Self::Secret, Self::Archived, Self::Internal]
|
|
|
}
|
|
|
}
|
|
|
|
|
|
fn inline_scan(bytes: &[u8]) -> (usize, Vec<usize>) {
|
|
|
let mut offset: usize = 0;
|
|
|
let mut offsets = Vec::new();
|
|
|
|
|
|
while offset + INDEX_ENTRY_SIZE <= bytes.len() {
|
|
|
offsets.push(offset);
|
|
|
let end = offset + INDEX_ENTRY_SIZE;
|
|
|
let entry = IndexEntry {
|
|
|
bytes: &bytes[offset..end],
|
|
|
};
|
|
|
|
|
|
offset += INDEX_ENTRY_SIZE + entry.compressed_len() as usize;
|
|
|
}
|
|
|
(offset, offsets)
|
|
|
}
|
|
|
|
|
|
impl super::RevlogIndex for Index {
|
|
|
fn len(&self) -> usize {
|
|
|
self.len()
|
|
|
}
|
|
|
|
|
|
fn node(&self, rev: Revision) -> Option<&Node> {
|
|
|
if rev == NULL_REVISION {
|
|
|
return Some(&NULL_NODE);
|
|
|
}
|
|
|
self.get_entry(rev).map(|entry| entry.hash())
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
|
pub struct IndexEntry<'a> {
|
|
|
bytes: &'a [u8],
|
|
|
}
|
|
|
|
|
|
impl<'a> IndexEntry<'a> {
|
|
|
/// Return the offset of the data.
|
|
|
pub fn offset(&self) -> usize {
|
|
|
let mut bytes = [0; 8];
|
|
|
bytes[2..8].copy_from_slice(&self.bytes[0..=5]);
|
|
|
BigEndian::read_u64(&bytes[..]) as usize
|
|
|
}
|
|
|
pub fn raw_offset(&self) -> u64 {
|
|
|
BigEndian::read_u64(&self.bytes[0..8])
|
|
|
}
|
|
|
|
|
|
pub fn flags(&self) -> u16 {
|
|
|
BigEndian::read_u16(&self.bytes[6..=7])
|
|
|
}
|
|
|
|
|
|
/// Return the compressed length of the data.
|
|
|
pub fn compressed_len(&self) -> u32 {
|
|
|
BigEndian::read_u32(&self.bytes[8..=11])
|
|
|
}
|
|
|
|
|
|
/// Return the uncompressed length of the data.
|
|
|
pub fn uncompressed_len(&self) -> i32 {
|
|
|
BigEndian::read_i32(&self.bytes[12..=15])
|
|
|
}
|
|
|
|
|
|
/// Return the revision upon which the data has been derived.
|
|
|
pub fn base_revision_or_base_of_delta_chain(&self) -> UncheckedRevision {
|
|
|
// TODO Maybe return an Option when base_revision == rev?
|
|
|
// Requires to add rev to IndexEntry
|
|
|
|
|
|
BigEndian::read_i32(&self.bytes[16..]).into()
|
|
|
}
|
|
|
|
|
|
pub fn link_revision(&self) -> UncheckedRevision {
|
|
|
BigEndian::read_i32(&self.bytes[20..]).into()
|
|
|
}
|
|
|
|
|
|
pub fn p1(&self) -> UncheckedRevision {
|
|
|
BigEndian::read_i32(&self.bytes[24..]).into()
|
|
|
}
|
|
|
|
|
|
pub fn p2(&self) -> UncheckedRevision {
|
|
|
BigEndian::read_i32(&self.bytes[28..]).into()
|
|
|
}
|
|
|
|
|
|
/// Return the hash of revision's full text.
|
|
|
///
|
|
|
/// Currently, SHA-1 is used and only the first 20 bytes of this field
|
|
|
/// are used.
|
|
|
pub fn hash(&self) -> &'a Node {
|
|
|
(&self.bytes[32..52]).try_into().unwrap()
|
|
|
}
|
|
|
|
|
|
pub fn as_bytes(&self) -> &'a [u8] {
|
|
|
self.bytes
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
|
pub use tests::IndexEntryBuilder;
|
|
|
|
|
|
#[cfg(test)]
|
|
|
mod tests {
|
|
|
use super::*;
|
|
|
use crate::NULL_NODE;
|
|
|
|
|
|
#[cfg(test)]
|
|
|
#[derive(Debug, Copy, Clone)]
|
|
|
pub struct IndexEntryBuilder {
|
|
|
is_first: bool,
|
|
|
is_inline: bool,
|
|
|
is_general_delta: bool,
|
|
|
version: u16,
|
|
|
offset: usize,
|
|
|
compressed_len: usize,
|
|
|
uncompressed_len: usize,
|
|
|
base_revision_or_base_of_delta_chain: Revision,
|
|
|
link_revision: Revision,
|
|
|
p1: Revision,
|
|
|
p2: Revision,
|
|
|
node: Node,
|
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
|
impl IndexEntryBuilder {
|
|
|
#[allow(clippy::new_without_default)]
|
|
|
pub fn new() -> Self {
|
|
|
Self {
|
|
|
is_first: false,
|
|
|
is_inline: false,
|
|
|
is_general_delta: true,
|
|
|
version: 1,
|
|
|
offset: 0,
|
|
|
compressed_len: 0,
|
|
|
uncompressed_len: 0,
|
|
|
base_revision_or_base_of_delta_chain: Revision(0),
|
|
|
link_revision: Revision(0),
|
|
|
p1: NULL_REVISION,
|
|
|
p2: NULL_REVISION,
|
|
|
node: NULL_NODE,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub fn is_first(&mut self, value: bool) -> &mut Self {
|
|
|
self.is_first = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_inline(&mut self, value: bool) -> &mut Self {
|
|
|
self.is_inline = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_general_delta(&mut self, value: bool) -> &mut Self {
|
|
|
self.is_general_delta = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_version(&mut self, value: u16) -> &mut Self {
|
|
|
self.version = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_offset(&mut self, value: usize) -> &mut Self {
|
|
|
self.offset = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_compressed_len(&mut self, value: usize) -> &mut Self {
|
|
|
self.compressed_len = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_uncompressed_len(&mut self, value: usize) -> &mut Self {
|
|
|
self.uncompressed_len = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_base_revision_or_base_of_delta_chain(
|
|
|
&mut self,
|
|
|
value: Revision,
|
|
|
) -> &mut Self {
|
|
|
self.base_revision_or_base_of_delta_chain = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_link_revision(&mut self, value: Revision) -> &mut Self {
|
|
|
self.link_revision = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_p1(&mut self, value: Revision) -> &mut Self {
|
|
|
self.p1 = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_p2(&mut self, value: Revision) -> &mut Self {
|
|
|
self.p2 = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn with_node(&mut self, value: Node) -> &mut Self {
|
|
|
self.node = value;
|
|
|
self
|
|
|
}
|
|
|
|
|
|
pub fn build(&self) -> Vec<u8> {
|
|
|
let mut bytes = Vec::with_capacity(INDEX_ENTRY_SIZE);
|
|
|
if self.is_first {
|
|
|
bytes.extend(match (self.is_general_delta, self.is_inline) {
|
|
|
(false, false) => [0u8, 0],
|
|
|
(false, true) => [0u8, 1],
|
|
|
(true, false) => [0u8, 2],
|
|
|
(true, true) => [0u8, 3],
|
|
|
});
|
|
|
bytes.extend(self.version.to_be_bytes());
|
|
|
// Remaining offset bytes.
|
|
|
bytes.extend([0u8; 2]);
|
|
|
} else {
|
|
|
// Offset stored on 48 bits (6 bytes)
|
|
|
bytes.extend(&(self.offset as u64).to_be_bytes()[2..]);
|
|
|
}
|
|
|
bytes.extend([0u8; 2]); // Revision flags.
|
|
|
bytes.extend((self.compressed_len as u32).to_be_bytes());
|
|
|
bytes.extend((self.uncompressed_len as u32).to_be_bytes());
|
|
|
bytes.extend(
|
|
|
self.base_revision_or_base_of_delta_chain.0.to_be_bytes(),
|
|
|
);
|
|
|
bytes.extend(self.link_revision.0.to_be_bytes());
|
|
|
bytes.extend(self.p1.0.to_be_bytes());
|
|
|
bytes.extend(self.p2.0.to_be_bytes());
|
|
|
bytes.extend(self.node.as_bytes());
|
|
|
bytes.extend(vec![0u8; 12]);
|
|
|
bytes
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub fn is_inline(index_bytes: &[u8]) -> bool {
|
|
|
IndexHeader::parse(index_bytes)
|
|
|
.expect("invalid header")
|
|
|
.format_flags()
|
|
|
.is_inline()
|
|
|
}
|
|
|
|
|
|
pub fn uses_generaldelta(index_bytes: &[u8]) -> bool {
|
|
|
IndexHeader::parse(index_bytes)
|
|
|
.expect("invalid header")
|
|
|
.format_flags()
|
|
|
.uses_generaldelta()
|
|
|
}
|
|
|
|
|
|
pub fn get_version(index_bytes: &[u8]) -> u16 {
|
|
|
IndexHeader::parse(index_bytes)
|
|
|
.expect("invalid header")
|
|
|
.format_version()
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn flags_when_no_inline_flag_test() {
|
|
|
let bytes = IndexEntryBuilder::new()
|
|
|
.is_first(true)
|
|
|
.with_general_delta(false)
|
|
|
.with_inline(false)
|
|
|
.build();
|
|
|
|
|
|
assert!(!is_inline(&bytes));
|
|
|
assert!(!uses_generaldelta(&bytes));
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn flags_when_inline_flag_test() {
|
|
|
let bytes = IndexEntryBuilder::new()
|
|
|
.is_first(true)
|
|
|
.with_general_delta(false)
|
|
|
.with_inline(true)
|
|
|
.build();
|
|
|
|
|
|
assert!(is_inline(&bytes));
|
|
|
assert!(!uses_generaldelta(&bytes));
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn flags_when_inline_and_generaldelta_flags_test() {
|
|
|
let bytes = IndexEntryBuilder::new()
|
|
|
.is_first(true)
|
|
|
.with_general_delta(true)
|
|
|
.with_inline(true)
|
|
|
.build();
|
|
|
|
|
|
assert!(is_inline(&bytes));
|
|
|
assert!(uses_generaldelta(&bytes));
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_offset() {
|
|
|
let bytes = IndexEntryBuilder::new().with_offset(1).build();
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.offset(), 1)
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_compressed_len() {
|
|
|
let bytes = IndexEntryBuilder::new().with_compressed_len(1).build();
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.compressed_len(), 1)
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_uncompressed_len() {
|
|
|
let bytes = IndexEntryBuilder::new().with_uncompressed_len(1).build();
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.uncompressed_len(), 1)
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_base_revision_or_base_of_delta_chain() {
|
|
|
let bytes = IndexEntryBuilder::new()
|
|
|
.with_base_revision_or_base_of_delta_chain(Revision(1))
|
|
|
.build();
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.base_revision_or_base_of_delta_chain(), 1.into())
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn link_revision_test() {
|
|
|
let bytes = IndexEntryBuilder::new()
|
|
|
.with_link_revision(Revision(123))
|
|
|
.build();
|
|
|
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.link_revision(), 123.into());
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn p1_test() {
|
|
|
let bytes = IndexEntryBuilder::new().with_p1(Revision(123)).build();
|
|
|
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.p1(), 123.into());
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn p2_test() {
|
|
|
let bytes = IndexEntryBuilder::new().with_p2(Revision(123)).build();
|
|
|
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(entry.p2(), 123.into());
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn node_test() {
|
|
|
let node = Node::from_hex("0123456789012345678901234567890123456789")
|
|
|
.unwrap();
|
|
|
let bytes = IndexEntryBuilder::new().with_node(node).build();
|
|
|
|
|
|
let entry = IndexEntry { bytes: &bytes };
|
|
|
|
|
|
assert_eq!(*entry.hash(), node);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn version_test() {
|
|
|
let bytes = IndexEntryBuilder::new()
|
|
|
.is_first(true)
|
|
|
.with_version(2)
|
|
|
.build();
|
|
|
|
|
|
assert_eq!(get_version(&bytes), 2)
|
|
|
}
|
|
|
}
|
|
|
|