##// END OF EJS Templates
rust: normalize `_for_unchecked_rev` naming among revlogs and the index...
rust: normalize `_for_unchecked_rev` naming among revlogs and the index This normalizes the naming scheme between the `Revlog`, `Changelog`, etc. which is less suprising, though no real bugs could stem from this because of the type signature mismatch. The very high-level `Repo` object still uses an `UncheckedRevision` parameter for its methods because that's what most callers will want.

File last commit:

r53079:85bff84f default
r53187:a3fa37bd default
Show More
vfs.rs
1131 lines | 36.1 KiB | application/rls-services+xml | RustLexer
use crate::errors::{HgError, HgResultExt, IoErrorContext, IoResultExt};
use crate::exit_codes;
use crate::fncache::FnCache;
use crate::revlog::path_encode::path_encode;
use crate::utils::files::{get_bytes_from_path, get_path_from_bytes};
use dyn_clone::DynClone;
use format_bytes::format_bytes;
use memmap2::{Mmap, MmapOptions};
use rand::distributions::{Alphanumeric, DistString};
use std::fs::{File, Metadata, OpenOptions};
use std::io::{ErrorKind, Read, Seek, Write};
use std::os::fd::AsRawFd;
use std::os::unix::fs::{MetadataExt, PermissionsExt};
use std::path::{Path, PathBuf};
#[cfg(test)]
use std::sync::atomic::AtomicUsize;
#[cfg(test)]
use std::sync::atomic::Ordering;
use std::sync::OnceLock;
/// Filesystem access abstraction for the contents of a given "base" diretory
#[derive(Clone)]
pub struct VfsImpl {
pub(crate) base: PathBuf,
pub readonly: bool,
pub mode: Option<u32>,
}
struct FileNotFound(std::io::Error, PathBuf);
/// Store the umask for the whole process since it's expensive to get.
static UMASK: OnceLock<u32> = OnceLock::new();
fn get_umask() -> u32 {
*UMASK.get_or_init(|| unsafe {
// TODO is there any way of getting the umask without temporarily
// setting it? Doesn't this affect all threads in this tiny window?
let mask = libc::umask(0);
libc::umask(mask);
mask & 0o777
})
}
/// Return the (unix) mode with which we will create/fix files
fn get_mode(base: impl AsRef<Path>) -> Option<u32> {
match base.as_ref().metadata() {
Ok(meta) => {
// files in .hg/ will be created using this mode
let mode = meta.mode();
// avoid some useless chmods
if (0o777 & !get_umask()) == (0o777 & mode) {
None
} else {
Some(mode)
}
}
Err(_) => None,
}
}
impl VfsImpl {
pub fn new(base: PathBuf, readonly: bool) -> Self {
let mode = get_mode(&base);
Self {
base,
readonly,
mode,
}
}
// XXX these methods are probably redundant with VFS trait?
pub fn join(&self, relative_path: impl AsRef<Path>) -> PathBuf {
self.base.join(relative_path)
}
pub fn symlink_metadata(
&self,
relative_path: impl AsRef<Path>,
) -> Result<std::fs::Metadata, HgError> {
let path = self.join(relative_path);
std::fs::symlink_metadata(&path).when_reading_file(&path)
}
pub fn read_link(
&self,
relative_path: impl AsRef<Path>,
) -> Result<PathBuf, HgError> {
let path = self.join(relative_path);
std::fs::read_link(&path).when_reading_file(&path)
}
pub fn read(
&self,
relative_path: impl AsRef<Path>,
) -> Result<Vec<u8>, HgError> {
let path = self.join(relative_path);
std::fs::read(&path).when_reading_file(&path)
}
/// Returns `Ok(None)` if the file does not exist.
pub fn try_read(
&self,
relative_path: impl AsRef<Path>,
) -> Result<Option<Vec<u8>>, HgError> {
match self.read(relative_path) {
Err(e) => match &e {
HgError::IoError { error, .. } => match error.kind() {
ErrorKind::NotFound => Ok(None),
_ => Err(e),
},
_ => Err(e),
},
Ok(v) => Ok(Some(v)),
}
}
fn mmap_open_gen(
&self,
relative_path: impl AsRef<Path>,
) -> Result<Result<Mmap, FileNotFound>, HgError> {
let path = self.join(relative_path);
let file = match std::fs::File::open(&path) {
Err(err) => {
if let ErrorKind::NotFound = err.kind() {
return Ok(Err(FileNotFound(err, path)));
};
return (Err(err)).when_reading_file(&path);
}
Ok(file) => file,
};
// Safety is "enforced" by locks and assuming other processes are
// well-behaved. If any misbehaving or malicious process does touch
// the index, it could lead to corruption. This is inherent
// to file-based `mmap`, though some platforms have some ways of
// mitigating.
// TODO linux: set the immutable flag with `chattr(1)`?
let mmap = unsafe { MmapOptions::new().map(&file) }
.when_reading_file(&path)?;
Ok(Ok(mmap))
}
pub fn mmap_open_opt(
&self,
relative_path: impl AsRef<Path>,
) -> Result<Option<Mmap>, HgError> {
self.mmap_open_gen(relative_path).map(|res| res.ok())
}
pub fn mmap_open(
&self,
relative_path: impl AsRef<Path>,
) -> Result<Mmap, HgError> {
match self.mmap_open_gen(relative_path)? {
Err(FileNotFound(err, path)) => Err(err).when_reading_file(&path),
Ok(res) => Ok(res),
}
}
#[cfg(unix)]
pub fn create_symlink(
&self,
relative_link_path: impl AsRef<Path>,
target_path: impl AsRef<Path>,
) -> Result<(), HgError> {
let link_path = self.join(relative_link_path);
std::os::unix::fs::symlink(target_path, &link_path)
.when_writing_file(&link_path)
}
/// Write `contents` into a temporary file, then rename to `relative_path`.
/// This makes writing to a file "atomic": a reader opening that path will
/// see either the previous contents of the file or the complete new
/// content, never a partial write.
pub fn atomic_write(
&self,
relative_path: impl AsRef<Path>,
contents: &[u8],
) -> Result<(), HgError> {
let mut tmp = tempfile::NamedTempFile::new_in(&self.base)
.when_writing_file(&self.base)?;
tmp.write_all(contents)
.and_then(|()| tmp.flush())
.when_writing_file(tmp.path())?;
let path = self.join(relative_path);
tmp.persist(&path)
.map_err(|e| e.error)
.when_writing_file(&path)?;
Ok(())
}
}
fn fs_metadata(
path: impl AsRef<Path>,
) -> Result<Option<std::fs::Metadata>, HgError> {
let path = path.as_ref();
match path.metadata() {
Ok(meta) => Ok(Some(meta)),
Err(error) => match error.kind() {
// TODO: when we require a Rust version where `NotADirectory` is
// stable, invert this logic and return None for it and `NotFound`
// and propagate any other error.
ErrorKind::PermissionDenied => Err(error).with_context(|| {
IoErrorContext::ReadingMetadata(path.to_owned())
}),
_ => Ok(None),
},
}
}
/// Abstraction over the files handled by a [`Vfs`].
#[derive(Debug)]
pub enum VfsFile {
Atomic(AtomicFile),
Normal {
file: File,
path: PathBuf,
/// If `Some`, check (and maybe fix) this file's timestamp ambiguity.
/// See [`is_filetime_ambiguous`].
check_ambig: Option<Metadata>,
},
}
impl VfsFile {
pub fn normal(file: File, path: PathBuf) -> Self {
Self::Normal {
file,
check_ambig: None,
path,
}
}
pub fn normal_check_ambig(
file: File,
path: PathBuf,
) -> Result<Self, HgError> {
Ok(Self::Normal {
file,
check_ambig: Some(path.metadata().when_reading_file(&path)?),
path,
})
}
pub fn try_clone(&self) -> Result<VfsFile, HgError> {
Ok(match self {
VfsFile::Atomic(AtomicFile {
fp,
temp_path,
check_ambig,
target_name,
is_open,
}) => Self::Atomic(AtomicFile {
fp: fp.try_clone().when_reading_file(temp_path)?,
temp_path: temp_path.clone(),
check_ambig: *check_ambig,
target_name: target_name.clone(),
is_open: *is_open,
}),
VfsFile::Normal {
file,
check_ambig,
path,
} => Self::Normal {
file: file.try_clone().when_reading_file(path)?,
check_ambig: check_ambig.clone(),
path: path.to_owned(),
},
})
}
pub fn set_len(&self, len: u64) -> Result<(), std::io::Error> {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.fp.set_len(len),
VfsFile::Normal { file, .. } => file.set_len(len),
}
}
pub fn metadata(&self) -> Result<std::fs::Metadata, std::io::Error> {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.fp.metadata(),
VfsFile::Normal { file, .. } => file.metadata(),
}
}
}
impl AsRawFd for VfsFile {
fn as_raw_fd(&self) -> std::os::unix::prelude::RawFd {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.fp.as_raw_fd(),
VfsFile::Normal { file, .. } => file.as_raw_fd(),
}
}
}
impl Seek for VfsFile {
fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.seek(pos),
VfsFile::Normal { file, .. } => file.seek(pos),
}
}
}
impl Read for VfsFile {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.fp.read(buf),
VfsFile::Normal { file, .. } => file.read(buf),
}
}
}
impl Write for VfsFile {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.fp.write(buf),
VfsFile::Normal { file, .. } => file.write(buf),
}
}
fn flush(&mut self) -> std::io::Result<()> {
match self {
VfsFile::Atomic(atomic_file) => atomic_file.fp.flush(),
VfsFile::Normal { file, .. } => file.flush(),
}
}
}
impl Drop for VfsFile {
fn drop(&mut self) {
if let VfsFile::Normal {
path,
check_ambig: Some(old),
..
} = self
{
avoid_timestamp_ambiguity(path, old)
}
}
}
/// Records the number of times we've fixed a timestamp ambiguity, only
/// applicable for tests.
#[cfg(test)]
static TIMESTAMP_FIXES_CALLS: AtomicUsize = AtomicUsize::new(0);
fn avoid_timestamp_ambiguity(path: &Path, old: &Metadata) {
if let Ok(new) = path.metadata() {
let is_ambiguous = is_filetime_ambiguous(&new, old);
if is_ambiguous {
let advanced =
filetime::FileTime::from_unix_time(old.mtime() + 1, 0);
if filetime::set_file_times(path, advanced, advanced).is_ok() {
#[cfg(test)]
{
TIMESTAMP_FIXES_CALLS.fetch_add(1, Ordering::Relaxed);
}
}
}
}
}
/// Examine whether new stat is ambiguous against old one
///
/// "S[N]" below means stat of a file at N-th change:
///
/// - S[n-1].ctime < S[n].ctime: can detect change of a file
/// - S[n-1].ctime == S[n].ctime
/// - S[n-1].ctime < S[n].mtime: means natural advancing (*1)
/// - S[n-1].ctime == S[n].mtime: is ambiguous (*2)
/// - S[n-1].ctime > S[n].mtime: never occurs naturally (don't care)
/// - S[n-1].ctime > S[n].ctime: never occurs naturally (don't care)
///
/// Case (*2) above means that a file was changed twice or more at
/// same time in sec (= S[n-1].ctime), and comparison of timestamp
/// is ambiguous.
///
/// Base idea to avoid such ambiguity is "advance mtime 1 sec, if
/// timestamp is ambiguous".
///
/// But advancing mtime only in case (*2) doesn't work as
/// expected, because naturally advanced S[n].mtime in case (*1)
/// might be equal to manually advanced S[n-1 or earlier].mtime.
///
/// Therefore, all "S[n-1].ctime == S[n].ctime" cases should be
/// treated as ambiguous regardless of mtime, to avoid overlooking
/// by confliction between such mtime.
///
/// Advancing mtime "if isambig(new, old)" ensures "S[n-1].mtime !=
/// S[n].mtime", even if size of a file isn't changed.
fn is_filetime_ambiguous(new: &Metadata, old: &Metadata) -> bool {
new.ctime() == old.ctime()
}
/// Writable file object that atomically updates a file
///
/// All writes will go to a temporary copy of the original file. Call
/// [`Self::close`] when you are done writing, and [`Self`] will rename
/// the temporary copy to the original name, making the changes
/// visible. If the object is destroyed without being closed, all your
/// writes are discarded.
#[derive(Debug)]
pub struct AtomicFile {
/// The temporary file to write to
fp: std::fs::File,
/// Path of the temp file
temp_path: PathBuf,
/// Used when stat'ing the file, is useful only if the target file is
/// guarded by any lock (e.g. repo.lock or repo.wlock).
check_ambig: bool,
/// Path of the target file
target_name: PathBuf,
/// Whether the file is open or not
is_open: bool,
}
impl AtomicFile {
pub fn new(
target_path: impl AsRef<Path>,
empty: bool,
check_ambig: bool,
) -> Result<Self, HgError> {
let target_path = target_path.as_ref().to_owned();
let random_id =
Alphanumeric.sample_string(&mut rand::thread_rng(), 12);
let filename =
target_path.file_name().expect("target has no filename");
let filename = get_bytes_from_path(filename);
let temp_filename =
format_bytes!(b".{}-{}~", filename, random_id.as_bytes());
let temp_path =
target_path.with_file_name(get_path_from_bytes(&temp_filename));
if !empty {
std::fs::copy(&target_path, &temp_path)
.with_context(|| IoErrorContext::CopyingFile {
from: target_path.to_owned(),
to: temp_path.to_owned(),
})
// If it doesn't exist, create it on open
.io_not_found_as_none()?;
}
let fp = std::fs::OpenOptions::new()
.write(true)
.create(true)
.truncate(empty)
.open(&temp_path)
.when_writing_file(&temp_path)?;
Ok(Self {
fp,
temp_path,
check_ambig,
target_name: target_path,
is_open: true,
})
}
pub fn from_file(
fp: std::fs::File,
check_ambig: bool,
temp_name: PathBuf,
target_name: PathBuf,
) -> Self {
Self {
fp,
check_ambig,
temp_path: temp_name,
target_name,
is_open: true,
}
}
/// Write `buf` to the temporary file
pub fn write_all(&mut self, buf: &[u8]) -> Result<(), std::io::Error> {
self.fp.write_all(buf)
}
fn target(&self) -> PathBuf {
self.temp_path
.parent()
.expect("should not be at the filesystem root")
.join(&self.target_name)
}
/// Close the temporary file and rename to the target
pub fn close(mut self) -> Result<(), std::io::Error> {
self.fp.flush()?;
let target = self.target();
if self.check_ambig {
if let Ok(stat) = target.metadata() {
std::fs::rename(&self.temp_path, &target)?;
avoid_timestamp_ambiguity(&target, &stat);
} else {
std::fs::rename(&self.temp_path, target)?;
}
} else {
std::fs::rename(&self.temp_path, target)?;
}
self.is_open = false;
Ok(())
}
}
impl Seek for AtomicFile {
fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
self.fp.seek(pos)
}
}
impl Drop for AtomicFile {
fn drop(&mut self) {
if self.is_open {
std::fs::remove_file(&self.temp_path).ok();
}
}
}
/// Abstracts over the VFS to allow for different implementations of the
/// filesystem layer (like passing one from Python).
pub trait Vfs: Sync + Send + DynClone {
// TODO make `open` readonly and make `open_read` an `open_write`
/// Open a [`VfsFile::Normal`] for writing and reading the file at
/// `filename`, relative to this VFS's root.
fn open(&self, filename: &Path) -> Result<VfsFile, HgError>;
/// Open a [`VfsFile::Normal`] for reading the file at `filename`,
/// relative to this VFS's root.
fn open_read(&self, filename: &Path) -> Result<VfsFile, HgError>;
/// Open a [`VfsFile::Normal`] for reading and writing the file at
/// `filename`, relative to this VFS's root. This file will be checked
/// for an ambiguous mtime on [`drop`]. See [`is_filetime_ambiguous`].
fn open_check_ambig(&self, filename: &Path) -> Result<VfsFile, HgError>;
/// Create a [`VfsFile::Normal`] for reading and writing the file at
/// `filename`, relative to this VFS's root. If the file already exists,
/// it will be truncated to 0 bytes.
fn create(
&self,
filename: &Path,
check_ambig: bool,
) -> Result<VfsFile, HgError>;
/// Create a [`VfsFile::Atomic`] for reading and writing the file at
/// `filename`, relative to this VFS's root. If the file already exists,
/// it will be truncated to 0 bytes.
fn create_atomic(
&self,
filename: &Path,
check_ambig: bool,
) -> Result<VfsFile, HgError>;
/// Return the total file size in bytes of the open `file`. Errors are
/// usual IO errors (invalid file handle, permissions, etc.)
fn file_size(&self, file: &VfsFile) -> Result<u64, HgError>;
/// Return `true` if `filename` exists relative to this VFS's root. Errors
/// will coerce to `false`, to this also returns `false` if there are
/// IO problems. This is fine because any operation that actually tries
/// to do anything with this path will get the same error.
fn exists(&self, filename: &Path) -> bool;
/// Remove the file at `filename` relative to this VFS's root. Errors
/// are the usual IO errors (lacking permission, file does not exist, etc.)
fn unlink(&self, filename: &Path) -> Result<(), HgError>;
/// Rename the file `from` to `to`, both relative to this VFS's root.
/// Errors are the usual IO errors (lacking permission, file does not
/// exist, etc.). If `check_ambig` is `true`, the VFS will check for an
/// ambiguous mtime on rename. See [`is_filetime_ambiguous`].
fn rename(
&self,
from: &Path,
to: &Path,
check_ambig: bool,
) -> Result<(), HgError>;
/// Rename the file `from` to `to`, both relative to this VFS's root.
/// Errors are the usual IO errors (lacking permission, file does not
/// exist, etc.). If `check_ambig` is passed, the VFS will check for an
/// ambiguous mtime on rename. See [`is_filetime_ambiguous`].
fn copy(&self, from: &Path, to: &Path) -> Result<(), HgError>;
/// Returns the absolute root path of this VFS, relative to which all
/// operations are done.
fn base(&self) -> &Path;
}
/// These methods will need to be implemented once `rhg` (and other) non-Python
/// users of `hg-core` start doing more on their own, like writing to files.
impl Vfs for VfsImpl {
fn open(&self, filename: &Path) -> Result<VfsFile, HgError> {
if self.readonly {
return Err(HgError::abort(
"write access in a readonly vfs",
exit_codes::ABORT,
None,
));
}
// TODO auditpath
let path = self.base.join(filename);
copy_in_place_if_hardlink(&path)?;
Ok(VfsFile::normal(
OpenOptions::new()
.create(false)
.create_new(false)
.write(true)
.read(true)
.open(&path)
.when_writing_file(&path)?,
path.to_owned(),
))
}
fn open_read(&self, filename: &Path) -> Result<VfsFile, HgError> {
// TODO auditpath
let path = self.base.join(filename);
Ok(VfsFile::normal(
std::fs::File::open(&path).when_reading_file(&path)?,
filename.to_owned(),
))
}
fn open_check_ambig(&self, filename: &Path) -> Result<VfsFile, HgError> {
if self.readonly {
return Err(HgError::abort(
"write access in a readonly vfs",
exit_codes::ABORT,
None,
));
}
let path = self.base.join(filename);
copy_in_place_if_hardlink(&path)?;
// TODO auditpath
VfsFile::normal_check_ambig(
OpenOptions::new()
.write(true)
.read(true) // Can be used for reading to save on `open` calls
.create(false)
.open(&path)
.when_reading_file(&path)?,
path.to_owned(),
)
}
fn create(
&self,
filename: &Path,
check_ambig: bool,
) -> Result<VfsFile, HgError> {
if self.readonly {
return Err(HgError::abort(
"write access in a readonly vfs",
exit_codes::ABORT,
None,
));
}
// TODO auditpath
let path = self.base.join(filename);
let parent = path.parent().expect("file at root");
std::fs::create_dir_all(parent).when_writing_file(parent)?;
let file = OpenOptions::new()
.create(true)
.truncate(true)
.write(true)
.read(true)
.open(&path)
.when_writing_file(&path)?;
if let Some(mode) = self.mode {
// Creating the file with the right permission (with `.mode()`)
// may not work since umask takes effect for file creation.
// So we need to fix the permission after creating the file.
fix_directory_permissions(&self.base, &path, mode)?;
let perm = std::fs::Permissions::from_mode(mode & 0o666);
std::fs::set_permissions(&path, perm).when_writing_file(&path)?;
}
Ok(VfsFile::Normal {
file,
check_ambig: if check_ambig {
Some(path.metadata().when_reading_file(&path)?)
} else {
None
},
path: path.to_owned(),
})
}
fn create_atomic(
&self,
_filename: &Path,
_check_ambig: bool,
) -> Result<VfsFile, HgError> {
todo!()
}
fn file_size(&self, file: &VfsFile) -> Result<u64, HgError> {
Ok(file
.metadata()
.map_err(|e| {
HgError::abort(
format!("Could not get file metadata: {}", e),
exit_codes::ABORT,
None,
)
})?
.size())
}
fn exists(&self, filename: &Path) -> bool {
self.base.join(filename).exists()
}
fn unlink(&self, filename: &Path) -> Result<(), HgError> {
if self.readonly {
return Err(HgError::abort(
"write access in a readonly vfs",
exit_codes::ABORT,
None,
));
}
let path = self.base.join(filename);
std::fs::remove_file(&path)
.with_context(|| IoErrorContext::RemovingFile(path))
}
fn rename(
&self,
from: &Path,
to: &Path,
check_ambig: bool,
) -> Result<(), HgError> {
if self.readonly {
return Err(HgError::abort(
"write access in a readonly vfs",
exit_codes::ABORT,
None,
));
}
let old_stat = if check_ambig {
Some(
from.metadata()
.when_reading_file(from)
.io_not_found_as_none()?,
)
} else {
None
};
let from = self.base.join(from);
let to = self.base.join(to);
std::fs::rename(&from, &to).with_context(|| {
IoErrorContext::RenamingFile {
from,
to: to.to_owned(),
}
})?;
if let Some(Some(old)) = old_stat {
avoid_timestamp_ambiguity(&to, &old);
}
Ok(())
}
fn copy(&self, from: &Path, to: &Path) -> Result<(), HgError> {
let from = self.base.join(from);
let to = self.base.join(to);
std::fs::copy(&from, &to)
.with_context(|| IoErrorContext::CopyingFile { from, to })
.map(|_| ())
}
fn base(&self) -> &Path {
&self.base
}
}
fn fix_directory_permissions(
base: &Path,
path: &Path,
mode: u32,
) -> Result<(), HgError> {
let mut ancestors = path.ancestors();
ancestors.next(); // yields the path itself
for ancestor in ancestors {
if ancestor == base {
break;
}
let perm = std::fs::Permissions::from_mode(mode);
std::fs::set_permissions(ancestor, perm)
.when_writing_file(ancestor)?;
}
Ok(())
}
/// A VFS that understands the `fncache` store layout (file encoding), and
/// adds new entries to the `fncache`.
/// TODO Only works when using from Python for now.
pub struct FnCacheVfs {
inner: VfsImpl,
fncache: Box<dyn FnCache>,
}
impl Clone for FnCacheVfs {
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
fncache: dyn_clone::clone_box(&*self.fncache),
}
}
}
impl FnCacheVfs {
pub fn new(
base: PathBuf,
readonly: bool,
fncache: Box<dyn FnCache>,
) -> Self {
let inner = VfsImpl::new(base, readonly);
Self { inner, fncache }
}
fn maybe_add_to_fncache(
&self,
filename: &Path,
encoded_path: &Path,
) -> Result<(), HgError> {
let relevant_file = (filename.starts_with("data/")
|| filename.starts_with("meta/"))
&& is_revlog_file(filename);
if relevant_file {
let not_load = !self.fncache.is_loaded()
&& (self.exists(filename)
&& self
.inner
.join(encoded_path)
.metadata()
.when_reading_file(encoded_path)?
.size()
!= 0);
if !not_load {
self.fncache.add(filename);
}
};
Ok(())
}
}
impl Vfs for FnCacheVfs {
fn open(&self, filename: &Path) -> Result<VfsFile, HgError> {
let encoded = path_encode(&get_bytes_from_path(filename));
let encoded_path = get_path_from_bytes(&encoded);
self.maybe_add_to_fncache(filename, encoded_path)?;
self.inner.open(encoded_path)
}
fn open_read(&self, filename: &Path) -> Result<VfsFile, HgError> {
let encoded = path_encode(&get_bytes_from_path(filename));
let filename = get_path_from_bytes(&encoded);
self.inner.open_read(filename)
}
fn open_check_ambig(&self, filename: &Path) -> Result<VfsFile, HgError> {
let encoded = path_encode(&get_bytes_from_path(filename));
let filename = get_path_from_bytes(&encoded);
self.inner.open_check_ambig(filename)
}
fn create(
&self,
filename: &Path,
check_ambig: bool,
) -> Result<VfsFile, HgError> {
let encoded = path_encode(&get_bytes_from_path(filename));
let encoded_path = get_path_from_bytes(&encoded);
self.maybe_add_to_fncache(filename, encoded_path)?;
self.inner.create(encoded_path, check_ambig)
}
fn create_atomic(
&self,
filename: &Path,
check_ambig: bool,
) -> Result<VfsFile, HgError> {
let encoded = path_encode(&get_bytes_from_path(filename));
let filename = get_path_from_bytes(&encoded);
self.inner.create_atomic(filename, check_ambig)
}
fn file_size(&self, file: &VfsFile) -> Result<u64, HgError> {
self.inner.file_size(file)
}
fn exists(&self, filename: &Path) -> bool {
let encoded = path_encode(&get_bytes_from_path(filename));
let filename = get_path_from_bytes(&encoded);
self.inner.exists(filename)
}
fn unlink(&self, filename: &Path) -> Result<(), HgError> {
let encoded = path_encode(&get_bytes_from_path(filename));
let filename = get_path_from_bytes(&encoded);
self.inner.unlink(filename)
}
fn rename(
&self,
from: &Path,
to: &Path,
check_ambig: bool,
) -> Result<(), HgError> {
let encoded = path_encode(&get_bytes_from_path(from));
let from = get_path_from_bytes(&encoded);
let encoded = path_encode(&get_bytes_from_path(to));
let to = get_path_from_bytes(&encoded);
self.inner.rename(from, to, check_ambig)
}
fn copy(&self, from: &Path, to: &Path) -> Result<(), HgError> {
let encoded = path_encode(&get_bytes_from_path(from));
let from = get_path_from_bytes(&encoded);
let encoded = path_encode(&get_bytes_from_path(to));
let to = get_path_from_bytes(&encoded);
self.inner.copy(from, to)
}
fn base(&self) -> &Path {
self.inner.base()
}
}
/// Detects whether `path` is a hardlink and does a tmp copy + rename erase
/// to turn it into its own file. Revlogs are usually hardlinked when doing
/// a local clone, and we don't want to modify the original repo.
fn copy_in_place_if_hardlink(path: &Path) -> Result<(), HgError> {
let metadata = path.metadata().when_writing_file(path)?;
if metadata.nlink() > 0 {
// If it's hardlinked, copy it and rename it back before changing it.
let tmpdir = path.parent().expect("file at root");
let name = Alphanumeric.sample_string(&mut rand::thread_rng(), 16);
let tmpfile = tmpdir.join(name);
std::fs::create_dir_all(tmpfile.parent().expect("file at root"))
.with_context(|| IoErrorContext::CopyingFile {
from: path.to_owned(),
to: tmpfile.to_owned(),
})?;
std::fs::copy(path, &tmpfile).with_context(|| {
IoErrorContext::CopyingFile {
from: path.to_owned(),
to: tmpfile.to_owned(),
}
})?;
std::fs::rename(&tmpfile, path).with_context(|| {
IoErrorContext::RenamingFile {
from: tmpfile,
to: path.to_owned(),
}
})?;
}
Ok(())
}
pub fn is_revlog_file(path: impl AsRef<Path>) -> bool {
path.as_ref()
.extension()
.map(|ext| {
["i", "idx", "d", "dat", "n", "nd", "sda"]
.contains(&ext.to_string_lossy().as_ref())
})
.unwrap_or(false)
}
pub(crate) fn is_dir(path: impl AsRef<Path>) -> Result<bool, HgError> {
Ok(fs_metadata(path)?.map_or(false, |meta| meta.is_dir()))
}
pub(crate) fn is_file(path: impl AsRef<Path>) -> Result<bool, HgError> {
Ok(fs_metadata(path)?.map_or(false, |meta| meta.is_file()))
}
/// Returns whether the given `path` is on a network file system.
/// Taken from `cargo`'s codebase.
#[cfg(target_os = "linux")]
pub(crate) fn is_on_nfs_mount(path: impl AsRef<Path>) -> bool {
use std::ffi::CString;
use std::mem;
use std::os::unix::prelude::*;
let path = match CString::new(path.as_ref().as_os_str().as_bytes()) {
Ok(path) => path,
Err(_) => return false,
};
unsafe {
let mut buf: libc::statfs = mem::zeroed();
let r = libc::statfs(path.as_ptr(), &mut buf);
r == 0 && buf.f_type as u32 == libc::NFS_SUPER_MAGIC as u32
}
}
/// Similar to what Cargo does; although detecting NFS (or non-local
/// file systems) _should_ be possible on other operating systems,
/// we'll just assume that mmap() works there, for now; after all,
/// _some_ functionality is better than a compile error, i.e. none at
/// all
#[cfg(not(target_os = "linux"))]
pub(crate) fn is_on_nfs_mount(_path: impl AsRef<Path>) -> bool {
false
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_atomic_file() {
let dir = tempfile::tempdir().unwrap().into_path();
let target_path = dir.join("sometargetname");
for empty in [true, false] {
let file = AtomicFile::new(&target_path, empty, false).unwrap();
assert!(file.is_open);
let filename =
file.temp_path.file_name().unwrap().to_str().unwrap();
// Make sure we have a coherent temp name
assert_eq!(filename.len(), 29, "{}", filename);
assert!(filename.contains("sometargetname"));
// Make sure the temp file is created in the same folder
assert_eq!(target_path.parent(), file.temp_path.parent());
}
assert!(!target_path.exists());
std::fs::write(&target_path, "version 1").unwrap();
let mut file = AtomicFile::new(&target_path, false, false).unwrap();
file.write_all(b"version 2!").unwrap();
assert_eq!(
std::fs::read(&target_path).unwrap(),
b"version 1".to_vec()
);
let temp_path = file.temp_path.to_owned();
// test that dropping the file should discard the temp file and not
// affect the target path.
drop(file);
assert_eq!(
std::fs::read(&target_path).unwrap(),
b"version 1".to_vec()
);
assert!(!temp_path.exists());
let mut file = AtomicFile::new(&target_path, false, false).unwrap();
file.write_all(b"version 2!").unwrap();
assert_eq!(
std::fs::read(&target_path).unwrap(),
b"version 1".to_vec()
);
file.close().unwrap();
assert_eq!(
std::fs::read(&target_path).unwrap(),
b"version 2!".to_vec(),
"{}",
std::fs::read_to_string(&target_path).unwrap()
);
assert!(target_path.exists());
assert!(!temp_path.exists());
}
#[test]
fn test_vfs_file_check_ambig() {
let dir = tempfile::tempdir().unwrap().into_path();
let file_path = dir.join("file");
fn vfs_file_write(file_path: &Path, check_ambig: bool) {
let file = std::fs::OpenOptions::new()
.write(true)
.open(file_path)
.unwrap();
let old_stat = if check_ambig {
Some(file.metadata().unwrap())
} else {
None
};
let mut vfs_file = VfsFile::Normal {
file,
path: file_path.to_owned(),
check_ambig: old_stat,
};
vfs_file.write_all(b"contents").unwrap();
}
std::fs::OpenOptions::new()
.write(true)
.create(true)
.truncate(false)
.open(&file_path)
.unwrap();
let number_of_writes = 3;
// Try multiple times, because reproduction of an ambiguity depends
// on "filesystem time"
for _ in 0..5 {
TIMESTAMP_FIXES_CALLS.store(0, Ordering::Relaxed);
vfs_file_write(&file_path, false);
let old_stat = file_path.metadata().unwrap();
if old_stat.ctime() != old_stat.mtime() {
// subsequent changing never causes ambiguity
continue;
}
// Repeat atomic write with `check_ambig == true`, to examine
// whether the mtime is advanced multiple times as expected
for _ in 0..number_of_writes {
vfs_file_write(&file_path, true);
}
let new_stat = file_path.metadata().unwrap();
if !is_filetime_ambiguous(&new_stat, &old_stat) {
// timestamp ambiguity was naturally avoided while repetition
continue;
}
assert_eq!(
TIMESTAMP_FIXES_CALLS.load(Ordering::Relaxed),
number_of_writes
);
assert_eq!(
old_stat.mtime() + number_of_writes as i64,
file_path.metadata().unwrap().mtime()
);
break;
}
// If we've arrived here without breaking, we might not have
// tested anything because the platform is too slow. This test will
// still work on fast platforms.
}
}