##// END OF EJS Templates
copies: use the rust code for `combine_changeset_copies`...
copies: use the rust code for `combine_changeset_copies` Changeset centric copy tracing now use the rust code. The rust code focussed on simplicity and will be optimised later. So the performance is not great yet. Now that all the pieces are in place we can start working on performance in the coming changesets. Below is a table that summarize how slower we got: Repo Cases Source-Rev Dest-Rev Py-time Rust-time Difference Factor ------------------------------------------------------------------------------------------------------------------------------------ mercurial x_revs_x_added_0_copies ad6b123de1c7 39cfcef4f463 : 0.000049 s, 0.000046 s, -0.000003 s, × 0.9388 mercurial x_revs_x_added_x_copies 2b1c78674230 0c1d10351869 : 0.000112 s, 0.000173 s, +0.000061 s, × 1.5446 mercurial x000_revs_x000_added_x_copies 81f8ff2a9bf2 dd3267698d84 : 0.004216 s, 0.006303 s, +0.002087 s, × 1.4950 pypy x_revs_x_added_0_copies aed021ee8ae8 099ed31b181b : 0.000204 s, 0.000229 s, +0.000025 s, × 1.1225 pypy x_revs_x000_added_0_copies 4aa4e1f8e19a 359343b9ac0e : 0.000058 s, 0.000056 s, -0.000002 s, × 0.9655 pypy x_revs_x_added_x_copies ac52eb7bbbb0 72e022663155 : 0.000112 s, 0.000143 s, +0.000031 s, × 1.2768 pypy x_revs_x00_added_x_copies c3b14617fbd7 ace7255d9a26 : 0.000339 s, 0.001166 s, +0.000827 s, × 3.4395 pypy x_revs_x000_added_x000_copies df6f7a526b60 a83dc6a2d56f : 0.010214 s, 0.022931 s, +0.012717 s, × 2.2451 pypy x000_revs_xx00_added_0_copies 89a76aede314 2f22446ff07e : 0.047497 s, 0.852446 s, +0.804949 s, × 17.9474 pypy x000_revs_x000_added_x_copies 8a3b5bfd266e 2c68e87c3efe : 0.075297 s, 2.221824 s, +2.146527 s, × 29.5075 pypy x000_revs_x000_added_x000_copies 89a76aede314 7b3dda341c84 : 0.057322 s, 1.194162 s, +1.136840 s, × 20.8325 pypy x0000_revs_x_added_0_copies d1defd0dc478 c9cb1334cc78 : 0.796264 s, 62.468362 s, +61.672098 s, × 78.4518 pypy x0000_revs_xx000_added_0_copies bf2c629d0071 4ffed77c095c : 0.020491 s, 0.022116 s, +0.001625 s, × 1.0793 pypy x0000_revs_xx000_added_x000_copies 08ea3258278e d9fa043f30c0 : 0.121612 s, 2.972788 s, +2.851176 s, × 24.4449 netbeans x_revs_x_added_0_copies fb0955ffcbcd a01e9239f9e7 : 0.000143 s, 0.000180 s, +0.000037 s, × 1.2587 netbeans x_revs_x000_added_0_copies 6f360122949f 20eb231cc7d0 : 0.000112 s, 0.000123 s, +0.000011 s, × 1.0982 netbeans x_revs_x_added_x_copies 1ada3faf6fb6 5a39d12eecf4 : 0.000232 s, 0.000315 s, +0.000083 s, × 1.3578 netbeans x_revs_x00_added_x_copies 35be93ba1e2c 9eec5e90c05f : 0.000721 s, 0.001297 s, +0.000576 s, × 1.7989 netbeans x000_revs_xx00_added_0_copies eac3045b4fdd 51d4ae7f1290 : 0.010115 s, 0.024884 s, +0.014769 s, × 2.4601 netbeans x000_revs_x000_added_x_copies e2063d266acd 6081d72689dc : 0.015461 s, 0.032653 s, +0.017192 s, × 2.1120 netbeans x000_revs_x000_added_x000_copies ff453e9fee32 411350406ec2 : 0.060756 s, 4.230118 s, +4.169362 s, × 69.6247 netbeans x0000_revs_xx000_added_x000_copies 588c2d1ced70 1aad62e59ddd : 0.605842 s, killed mozilla-central x_revs_x_added_0_copies 3697f962bb7b 7015fcdd43a2 : 0.000164 s, 0.000197 s, +0.000033 s, × 1.2012 mozilla-central x_revs_x000_added_0_copies dd390860c6c9 40d0c5bed75d : 0.000331 s, 0.000622 s, +0.000291 s, × 1.8792 mozilla-central x_revs_x_added_x_copies 8d198483ae3b 14207ffc2b2f : 0.000249 s, 0.000296 s, +0.000047 s, × 1.1888 mozilla-central x_revs_x00_added_x_copies 98cbc58cc6bc 446a150332c3 : 0.000711 s, 0.001626 s, +0.000915 s, × 2.2869 mozilla-central x_revs_x000_added_x000_copies 3c684b4b8f68 0a5e72d1b479 : 0.003438 s, 0.006218 s, +0.002780 s, × 1.8086 mozilla-central x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 0.069869 s, 0.132760 s, +0.062891 s, × 1.9001 mozilla-central x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.005701 s, 0.029001 s, +0.023300 s, × 5.0870 mozilla-central x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.005757 s, 0.005886 s, +0.000129 s, × 1.0224 mozilla-central x000_revs_x000_added_x000_copies 7c97034feb78 4407bd0c6330 : 0.061826 s, 3.619850 s, +3.558024 s, × 58.5490 mozilla-central x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 0.043354 s, 0.058678 s, +0.015324 s, × 1.3535 mozilla-central x0000_revs_xx000_added_x000_copies f78c615a656c 96a38b690156 : 0.198979 s, 11.926587 s, +11.727608 s, × 59.9389 mozilla-central x00000_revs_x0000_added_x0000_copies 6832ae71433c 4c222a1d9a00 : 2.067096 s, killed mozilla-central x00000_revs_x00000_added_x000_copies 76caed42cf7c 1daa622bbe42 : 3.102616 s, killed mozilla-try x_revs_x_added_0_copies aaf6dde0deb8 9790f499805a : 0.001212 s, 0.001204 s, -0.000008 s, × 0.9934 mozilla-try x_revs_x000_added_0_copies d8d0222927b4 5bb8ce8c7450 : 0.001237 s, 0.001217 s, -0.000020 s, × 0.9838 mozilla-try x_revs_x_added_x_copies 092fcca11bdb 936255a0384a : 0.000557 s, 0.000605 s, +0.000048 s, × 1.0862 mozilla-try x_revs_x00_added_x_copies b53d2fadbdb5 017afae788ec : 0.001532 s, 0.001876 s, +0.000344 s, × 1.2245 mozilla-try x_revs_x000_added_x000_copies 20408ad61ce5 6f0ee96e21ad : 0.035166 s, 0.078190 s, +0.043024 s, × 2.2235 mozilla-try x_revs_x0000_added_x0000_copies effb563bb7e5 c07a39dc4e80 : 0.070336 s, 0.135428 s, +0.065092 s, × 1.9254 mozilla-try x000_revs_xx00_added_0_copies 6100d773079a 04a55431795e : 0.006080 s, 0.029123 s, +0.023043 s, × 4.7900 mozilla-try x000_revs_x000_added_x_copies 9f17a6fc04f9 2d37b966abed : 0.006099 s, 0.006141 s, +0.000042 s, × 1.0069 mozilla-try x000_revs_x000_added_x000_copies 1346fd0130e4 4c65cbdabc1f : 0.064317 s, 4.857827 s, +4.793510 s, × 75.5294 mozilla-try x0000_revs_x_added_0_copies 63519bfd42ee a36a2a865d92 : 0.303263 s, 10.674920 s, +10.371657 s, × 35.2002 mozilla-try x0000_revs_x_added_x_copies 9fe69ff0762d bcabf2a78927 : 0.292804 s, 9.789462 s, +9.496658 s, × 33.4335 mozilla-try x0000_revs_xx000_added_x_copies 156f6e2674f2 4d0f2c178e66 : 0.107594 s, 1.087890 s, +0.980296 s, × 10.1111 mozilla-try x0000_revs_xx000_added_0_copies 9eec5917337d 67118cc6dcad : 0.045202 s, 0.060556 s, +0.015354 s, × 1.3397 mozilla-try x0000_revs_xx000_added_x000_copies 89294cd501d9 7ccb2fc7ccb5 : 1.926277 s, killed mozilla-try x0000_revs_x0000_added_x0000_copies e928c65095ed e951f4ad123a : 0.794492 s, killed mozilla-try x00000_revs_x_added_0_copies 6a320851d377 1ebb79acd503 : 84.521497 s, killed mozilla-try x00000_revs_x00000_added_0_copies dc8a3ca7010e d16fde900c9c : 0.965937 s, 19.647038 s, +18.681101 s, × 20.3399 mozilla-try x00000_revs_x_added_x_copies 5173c4b6f97c 95d83ee7242d : 83.367146 s, killed mozilla-try x00000_revs_x000_added_x_copies 9126823d0e9c ca82787bb23c : 84.260895 s, killed mozilla-try x00000_revs_x0000_added_x0000_copies 8d3fafa80d4b eb884023b810 : 3.274537 s, killed mozilla-try x00000_revs_x00000_added_x0000_copies 1b661134e2ca 1ae03d022d6d : 42.235843 s, killed mozilla-try x00000_revs_x00000_added_x000_copies 9b2a99adc05e 8e29777b48e6 : 49.872829 s, killed Differential Revision: https://phab.mercurial-scm.org/D9299

File last commit:

r45500:26114bd6 default
r46576:a66568f2 default
Show More
ancestors.rs
787 lines | 25.5 KiB | application/rls-services+xml | RustLexer
// ancestors.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Rust versions of generic DAG ancestors algorithms for Mercurial
use super::{Graph, GraphError, Revision, NULL_REVISION};
use crate::dagops;
use std::cmp::max;
use std::collections::{BinaryHeap, HashSet};
/// Iterator over the ancestors of a given list of revisions
/// This is a generic type, defined and implemented for any Graph, so that
/// it's easy to
///
/// - unit test in pure Rust
/// - bind to main Mercurial code, potentially in several ways and have these
/// bindings evolve over time
pub struct AncestorsIterator<G: Graph> {
graph: G,
visit: BinaryHeap<Revision>,
seen: HashSet<Revision>,
stoprev: Revision,
}
/// Lazy ancestors set, backed by AncestorsIterator
pub struct LazyAncestors<G: Graph + Clone> {
graph: G,
containsiter: AncestorsIterator<G>,
initrevs: Vec<Revision>,
stoprev: Revision,
inclusive: bool,
}
pub struct MissingAncestors<G: Graph> {
graph: G,
bases: HashSet<Revision>,
max_base: Revision,
}
impl<G: Graph> AncestorsIterator<G> {
/// Constructor.
///
/// if `inclusive` is true, then the init revisions are emitted in
/// particular, otherwise iteration starts from their parents.
pub fn new(
graph: G,
initrevs: impl IntoIterator<Item = Revision>,
stoprev: Revision,
inclusive: bool,
) -> Result<Self, GraphError> {
let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
if inclusive {
let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
let seen = visit.iter().cloned().collect();
return Ok(AncestorsIterator {
visit,
seen,
stoprev,
graph,
});
}
let mut this = AncestorsIterator {
visit: BinaryHeap::new(),
seen: HashSet::new(),
stoprev,
graph,
};
this.seen.insert(NULL_REVISION);
for rev in filtered_initrevs {
for parent in this.graph.parents(rev)?.iter().cloned() {
this.conditionally_push_rev(parent);
}
}
Ok(this)
}
#[inline]
fn conditionally_push_rev(&mut self, rev: Revision) {
if self.stoprev <= rev && self.seen.insert(rev) {
self.visit.push(rev);
}
}
/// Consumes partially the iterator to tell if the given target
/// revision
/// is in the ancestors it emits.
/// This is meant for iterators actually dedicated to that kind of
/// purpose
pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
if self.seen.contains(&target) && target != NULL_REVISION {
return Ok(true);
}
for item in self {
let rev = item?;
if rev == target {
return Ok(true);
}
if rev < target {
return Ok(false);
}
}
Ok(false)
}
pub fn peek(&self) -> Option<Revision> {
self.visit.peek().cloned()
}
/// Tell if the iterator is about an empty set
///
/// The result does not depend whether the iterator has been consumed
/// or not.
/// This is mostly meant for iterators backing a lazy ancestors set
pub fn is_empty(&self) -> bool {
if self.visit.len() > 0 {
return false;
}
if self.seen.len() > 1 {
return false;
}
// at this point, the seen set is at most a singleton.
// If not `self.inclusive`, it's still possible that it has only
// the null revision
self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
}
}
/// Main implementation for the iterator
///
/// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
/// with a few non crucial differences:
///
/// - there's no filtering of invalid parent revisions. Actually, it should be
/// consistent and more efficient to filter them from the end caller.
/// - we don't have the optimization for adjacent revisions (i.e., the case
/// where `p1 == rev - 1`), because it amounts to update the first element of
/// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
/// - we save a few pushes by comparing with `stoprev` before pushing
impl<G: Graph> Iterator for AncestorsIterator<G> {
type Item = Result<Revision, GraphError>;
fn next(&mut self) -> Option<Self::Item> {
let current = match self.visit.peek() {
None => {
return None;
}
Some(c) => *c,
};
let [p1, p2] = match self.graph.parents(current) {
Ok(ps) => ps,
Err(e) => return Some(Err(e)),
};
if p1 < self.stoprev || !self.seen.insert(p1) {
self.visit.pop();
} else {
*(self.visit.peek_mut().unwrap()) = p1;
};
self.conditionally_push_rev(p2);
Some(Ok(current))
}
}
impl<G: Graph + Clone> LazyAncestors<G> {
pub fn new(
graph: G,
initrevs: impl IntoIterator<Item = Revision>,
stoprev: Revision,
inclusive: bool,
) -> Result<Self, GraphError> {
let v: Vec<Revision> = initrevs.into_iter().collect();
Ok(LazyAncestors {
graph: graph.clone(),
containsiter: AncestorsIterator::new(
graph,
v.iter().cloned(),
stoprev,
inclusive,
)?,
initrevs: v,
stoprev,
inclusive,
})
}
pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
self.containsiter.contains(rev)
}
pub fn is_empty(&self) -> bool {
self.containsiter.is_empty()
}
pub fn iter(&self) -> AncestorsIterator<G> {
// the arguments being the same as for self.containsiter, we know
// for sure that AncestorsIterator constructor can't fail
AncestorsIterator::new(
self.graph.clone(),
self.initrevs.iter().cloned(),
self.stoprev,
self.inclusive,
)
.unwrap()
}
}
impl<G: Graph> MissingAncestors<G> {
pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
let mut created = MissingAncestors {
graph,
bases: HashSet::new(),
max_base: NULL_REVISION,
};
created.add_bases(bases);
created
}
pub fn has_bases(&self) -> bool {
!self.bases.is_empty()
}
/// Return a reference to current bases.
///
/// This is useful in unit tests, but also setdiscovery.py does
/// read the bases attribute of a ancestor.missingancestors instance.
pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
&self.bases
}
/// Computes the relative heads of current bases.
///
/// The object is still usable after this.
pub fn bases_heads(&self) -> Result<HashSet<Revision>, GraphError> {
dagops::heads(&self.graph, self.bases.iter())
}
/// Consumes the object and returns the relative heads of its bases.
pub fn into_bases_heads(
mut self,
) -> Result<HashSet<Revision>, GraphError> {
dagops::retain_heads(&self.graph, &mut self.bases)?;
Ok(self.bases)
}
/// Add some revisions to `self.bases`
///
/// Takes care of keeping `self.max_base` up to date.
pub fn add_bases(
&mut self,
new_bases: impl IntoIterator<Item = Revision>,
) {
let mut max_base = self.max_base;
self.bases.extend(
new_bases
.into_iter()
.filter(|&rev| rev != NULL_REVISION)
.map(|r| {
if r > max_base {
max_base = r;
}
r
}),
);
self.max_base = max_base;
}
/// Remove all ancestors of self.bases from the revs set (in place)
pub fn remove_ancestors_from(
&mut self,
revs: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
revs.retain(|r| !self.bases.contains(r));
// the null revision is always an ancestor. Logically speaking
// it's debatable in case bases is empty, but the Python
// implementation always adds NULL_REVISION to bases, making it
// unconditionnally true.
revs.remove(&NULL_REVISION);
if revs.is_empty() {
return Ok(());
}
// anything in revs > start is definitely not an ancestor of bases
// revs <= start need to be investigated
if self.max_base == NULL_REVISION {
return Ok(());
}
// whatever happens, we'll keep at least keepcount of them
// knowing this gives us a earlier stop condition than
// going all the way to the root
let keepcount = revs.iter().filter(|r| **r > self.max_base).count();
let mut curr = self.max_base;
while curr != NULL_REVISION && revs.len() > keepcount {
if self.bases.contains(&curr) {
revs.remove(&curr);
self.add_parents(curr)?;
}
curr -= 1;
}
Ok(())
}
/// Add the parents of `rev` to `self.bases`
///
/// This has no effect on `self.max_base`
#[inline]
fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
if rev == NULL_REVISION {
return Ok(());
}
for p in self.graph.parents(rev)?.iter().cloned() {
// No need to bother the set with inserting NULL_REVISION over and
// over
if p != NULL_REVISION {
self.bases.insert(p);
}
}
Ok(())
}
/// Return all the ancestors of revs that are not ancestors of self.bases
///
/// This may include elements from revs.
///
/// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
/// revision number order, which is a topological order.
pub fn missing_ancestors(
&mut self,
revs: impl IntoIterator<Item = Revision>,
) -> Result<Vec<Revision>, GraphError> {
// just for convenience and comparison with Python version
let bases_visit = &mut self.bases;
let mut revs: HashSet<Revision> = revs
.into_iter()
.filter(|r| !bases_visit.contains(r))
.collect();
let revs_visit = &mut revs;
let mut both_visit: HashSet<Revision> =
revs_visit.intersection(&bases_visit).cloned().collect();
if revs_visit.is_empty() {
return Ok(Vec::new());
}
let max_revs = revs_visit.iter().cloned().max().unwrap();
let start = max(self.max_base, max_revs);
// TODO heuristics for with_capacity()?
let mut missing: Vec<Revision> = Vec::new();
for curr in (0..=start).rev() {
if revs_visit.is_empty() {
break;
}
if both_visit.remove(&curr) {
// curr's parents might have made it into revs_visit through
// another path
for p in self.graph.parents(curr)?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
revs_visit.remove(&p);
bases_visit.insert(p);
both_visit.insert(p);
}
} else if revs_visit.remove(&curr) {
missing.push(curr);
for p in self.graph.parents(curr)?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
if bases_visit.contains(&p) {
// p is already known to be an ancestor of revs_visit
revs_visit.remove(&p);
both_visit.insert(p);
} else if both_visit.contains(&p) {
// p should have been in bases_visit
revs_visit.remove(&p);
bases_visit.insert(p);
} else {
// visit later
revs_visit.insert(p);
}
}
} else if bases_visit.contains(&curr) {
for p in self.graph.parents(curr)?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
if revs_visit.remove(&p) || both_visit.contains(&p) {
// p is an ancestor of bases_visit, and is implicitly
// in revs_visit, which means p is ::revs & ::bases.
bases_visit.insert(p);
both_visit.insert(p);
} else {
bases_visit.insert(p);
}
}
}
}
missing.reverse();
Ok(missing)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::{SampleGraph, VecGraph};
use std::iter::FromIterator;
fn list_ancestors<G: Graph>(
graph: G,
initrevs: Vec<Revision>,
stoprev: Revision,
inclusive: bool,
) -> Vec<Revision> {
AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
.unwrap()
.map(|res| res.unwrap())
.collect()
}
#[test]
/// Same tests as test-ancestor.py, without membership
/// (see also test-ancestor.py.out)
fn test_list_ancestor() {
assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 0, false),
vec![8, 7, 4, 3, 2, 1, 0]
);
assert_eq!(
list_ancestors(SampleGraph, vec![1, 3], 0, false),
vec![1, 0]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 0, true),
vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 6, false),
vec![8, 7]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 6, true),
vec![13, 11, 8, 7]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 11, true),
vec![13, 11]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 12, true),
vec![13]
);
assert_eq!(
list_ancestors(SampleGraph, vec![10, 1], 0, true),
vec![10, 5, 4, 2, 1, 0]
);
}
#[test]
/// Corner case that's not directly in test-ancestors.py, but
/// that happens quite often, as demonstrated by running the whole
/// suite.
/// For instance, run tests/test-obsolete-checkheads.t
fn test_nullrev_input() {
let mut iter =
AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap();
assert_eq!(iter.next(), None)
}
#[test]
fn test_contains() {
let mut lazy =
AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap();
assert!(lazy.contains(1).unwrap());
assert!(!lazy.contains(3).unwrap());
let mut lazy =
AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
assert!(!lazy.contains(NULL_REVISION).unwrap());
}
#[test]
fn test_peek() {
let mut iter =
AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
// peek() gives us the next value
assert_eq!(iter.peek(), Some(10));
// but it's not been consumed
assert_eq!(iter.next(), Some(Ok(10)));
// and iteration resumes normally
assert_eq!(iter.next(), Some(Ok(5)));
// let's drain the iterator to test peek() at the end
while iter.next().is_some() {}
assert_eq!(iter.peek(), None);
}
#[test]
fn test_empty() {
let mut iter =
AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
assert!(!iter.is_empty());
while iter.next().is_some() {}
assert!(!iter.is_empty());
let iter =
AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap();
assert!(iter.is_empty());
// case where iter.seen == {NULL_REVISION}
let iter =
AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
assert!(iter.is_empty());
}
/// A corrupted Graph, supporting error handling tests
#[derive(Clone, Debug)]
struct Corrupted;
impl Graph for Corrupted {
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
match rev {
1 => Ok([0, -1]),
r => Err(GraphError::ParentOutOfRange(r)),
}
}
}
#[test]
fn test_initrev_out_of_range() {
// inclusive=false looks up initrev's parents right away
match AncestorsIterator::new(SampleGraph, vec![25], 0, false) {
Ok(_) => panic!("Should have been ParentOutOfRange"),
Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
}
}
#[test]
fn test_next_out_of_range() {
// inclusive=false looks up initrev's parents right away
let mut iter =
AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
}
#[test]
fn test_lazy_iter_contains() {
let mut lazy =
LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap();
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
// compare with iterator tests on the same initial revisions
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
// contains() results are correct, unaffected by the fact that
// we consumed entirely an iterator out of lazy
assert_eq!(lazy.contains(2), Ok(true));
assert_eq!(lazy.contains(9), Ok(false));
}
#[test]
fn test_lazy_contains_iter() {
let mut lazy =
LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
assert_eq!(lazy.contains(2), Ok(true));
assert_eq!(lazy.contains(6), Ok(false));
// after consumption of 2 by the inner iterator, results stay
// consistent
assert_eq!(lazy.contains(2), Ok(true));
assert_eq!(lazy.contains(5), Ok(false));
// iter() still gives us a fresh iterator
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
}
#[test]
/// Test constructor, add/get bases and heads
fn test_missing_bases() -> Result<(), GraphError> {
let mut missing_ancestors =
MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned());
let mut as_vec: Vec<Revision> =
missing_ancestors.get_bases().iter().cloned().collect();
as_vec.sort();
assert_eq!(as_vec, [1, 3, 5]);
assert_eq!(missing_ancestors.max_base, 5);
missing_ancestors.add_bases([3, 7, 8].iter().cloned());
as_vec = missing_ancestors.get_bases().iter().cloned().collect();
as_vec.sort();
assert_eq!(as_vec, [1, 3, 5, 7, 8]);
assert_eq!(missing_ancestors.max_base, 8);
as_vec = missing_ancestors.bases_heads()?.iter().cloned().collect();
as_vec.sort();
assert_eq!(as_vec, [3, 5, 7, 8]);
Ok(())
}
fn assert_missing_remove(
bases: &[Revision],
revs: &[Revision],
expected: &[Revision],
) {
let mut missing_ancestors =
MissingAncestors::new(SampleGraph, bases.iter().cloned());
let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
missing_ancestors
.remove_ancestors_from(&mut revset)
.unwrap();
let mut as_vec: Vec<Revision> = revset.into_iter().collect();
as_vec.sort();
assert_eq!(as_vec.as_slice(), expected);
}
#[test]
fn test_missing_remove() {
assert_missing_remove(
&[1, 2, 3, 4, 7],
Vec::from_iter(1..10).as_slice(),
&[5, 6, 8, 9],
);
assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
}
fn assert_missing_ancestors(
bases: &[Revision],
revs: &[Revision],
expected: &[Revision],
) {
let mut missing_ancestors =
MissingAncestors::new(SampleGraph, bases.iter().cloned());
let missing = missing_ancestors
.missing_ancestors(revs.iter().cloned())
.unwrap();
assert_eq!(missing.as_slice(), expected);
}
#[test]
fn test_missing_ancestors() {
// examples taken from test-ancestors.py by having it run
// on the same graph (both naive and fast Python algs)
assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
assert_missing_ancestors(&[11], &[10], &[5, 10]);
assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
}
/// An interesting case found by a random generator similar to
/// the one in test-ancestor.py. An early version of Rust MissingAncestors
/// failed this, yet none of the integration tests of the whole suite
/// catched it.
#[test]
fn test_remove_ancestors_from_case1() {
let graph: VecGraph = vec![
[NULL_REVISION, NULL_REVISION],
[0, NULL_REVISION],
[1, 0],
[2, 1],
[3, NULL_REVISION],
[4, NULL_REVISION],
[5, 1],
[2, NULL_REVISION],
[7, NULL_REVISION],
[8, NULL_REVISION],
[9, NULL_REVISION],
[10, 1],
[3, NULL_REVISION],
[12, NULL_REVISION],
[13, NULL_REVISION],
[14, NULL_REVISION],
[4, NULL_REVISION],
[16, NULL_REVISION],
[17, NULL_REVISION],
[18, NULL_REVISION],
[19, 11],
[20, NULL_REVISION],
[21, NULL_REVISION],
[22, NULL_REVISION],
[23, NULL_REVISION],
[2, NULL_REVISION],
[3, NULL_REVISION],
[26, 24],
[27, NULL_REVISION],
[28, NULL_REVISION],
[12, NULL_REVISION],
[1, NULL_REVISION],
[1, 9],
[32, NULL_REVISION],
[33, NULL_REVISION],
[34, 31],
[35, NULL_REVISION],
[36, 26],
[37, NULL_REVISION],
[38, NULL_REVISION],
[39, NULL_REVISION],
[40, NULL_REVISION],
[41, NULL_REVISION],
[42, 26],
[0, NULL_REVISION],
[44, NULL_REVISION],
[45, 4],
[40, NULL_REVISION],
[47, NULL_REVISION],
[36, 0],
[49, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[51, NULL_REVISION],
[52, NULL_REVISION],
[53, NULL_REVISION],
[14, NULL_REVISION],
[55, NULL_REVISION],
[15, NULL_REVISION],
[23, NULL_REVISION],
[58, NULL_REVISION],
[59, NULL_REVISION],
[2, NULL_REVISION],
[61, 59],
[62, NULL_REVISION],
[63, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[65, NULL_REVISION],
[66, NULL_REVISION],
[67, NULL_REVISION],
[68, NULL_REVISION],
[37, 28],
[69, 25],
[71, NULL_REVISION],
[72, NULL_REVISION],
[50, 2],
[74, NULL_REVISION],
[12, NULL_REVISION],
[18, NULL_REVISION],
[77, NULL_REVISION],
[78, NULL_REVISION],
[79, NULL_REVISION],
[43, 33],
[81, NULL_REVISION],
[82, NULL_REVISION],
[83, NULL_REVISION],
[84, 45],
[85, NULL_REVISION],
[86, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[88, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[76, 83],
[44, NULL_REVISION],
[92, NULL_REVISION],
[93, NULL_REVISION],
[9, NULL_REVISION],
[95, 67],
[96, NULL_REVISION],
[97, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
];
let problem_rev = 28 as Revision;
let problem_base = 70 as Revision;
// making the problem obvious: problem_rev is a parent of problem_base
assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
let mut missing_ancestors: MissingAncestors<VecGraph> =
MissingAncestors::new(
graph,
[60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
.iter()
.cloned(),
);
assert!(missing_ancestors.bases.contains(&problem_base));
let mut revs: HashSet<Revision> =
[4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
.iter()
.cloned()
.collect();
missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
assert!(!revs.contains(&problem_rev));
}
}