##// END OF EJS Templates
exchangev2: start to implement pull with wire protocol v2...
exchangev2: start to implement pull with wire protocol v2 Wire protocol version 2 will take a substantially different approach to exchange than version 1 (at least as far as pulling is concerned). This commit establishes a new exchangev2 module for holding code related to exchange using wire protocol v2. I could have added things to the existing exchange module. But it is already quite big. And doing things inline isn't in question because the existing code is already littered with conditional code for various states of support for the existing wire protocol as it evolved over 10+ years. A new module gives us a chance to make a clean break. This approach does mean we'll end up writing some duplicate code. And there's a significant chance we'll miss functionality as code is ported. The plan is to eventually add #testcase's to existing tests so the new wire protocol is tested side-by-side with the existing one. This will hopefully tease out any features that weren't ported properly. But before we get there, we need to build up support for the new exchange methods. Our journey towards implementing a new exchange begins with pulling. And pulling begins with discovery. The discovery code added to exchangev2 is heavily drawn from the following functions: * exchange._pulldiscoverychangegroup * discovery.findcommonincoming For now, we build on top of existing discovery mechanisms. The new wire protocol should be capable of doing things more efficiently. But I'd rather defer on this problem. To foster the transition, we invent a fake capability on the HTTPv2 peer and have the main pull code in exchange.py call into exchangev2 when the new wire protocol is being used. Differential Revision: https://phab.mercurial-scm.org/D4480

File last commit:

r38001:bbdc1bc5 default
r39665:a86d21e7 default
Show More
logexchange.py
152 lines | 4.6 KiB | text/x-python | PythonLexer
# logexchange.py
#
# Copyright 2017 Augie Fackler <raf@durin42.com>
# Copyright 2017 Sean Farley <sean@farley.io>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
from .node import hex
from . import (
util,
vfs as vfsmod,
)
# directory name in .hg/ in which remotenames files will be present
remotenamedir = 'logexchange'
def readremotenamefile(repo, filename):
"""
reads a file from .hg/logexchange/ directory and yields it's content
filename: the file to be read
yield a tuple (node, remotepath, name)
"""
vfs = vfsmod.vfs(repo.vfs.join(remotenamedir))
if not vfs.exists(filename):
return
f = vfs(filename)
lineno = 0
for line in f:
line = line.strip()
if not line:
continue
# contains the version number
if lineno == 0:
lineno += 1
try:
node, remote, rname = line.split('\0')
yield node, remote, rname
except ValueError:
pass
f.close()
def readremotenames(repo):
"""
read the details about the remotenames stored in .hg/logexchange/ and
yields a tuple (node, remotepath, name). It does not yields information
about whether an entry yielded is branch or bookmark. To get that
information, call the respective functions.
"""
for bmentry in readremotenamefile(repo, 'bookmarks'):
yield bmentry
for branchentry in readremotenamefile(repo, 'branches'):
yield branchentry
def writeremotenamefile(repo, remotepath, names, nametype):
vfs = vfsmod.vfs(repo.vfs.join(remotenamedir))
f = vfs(nametype, 'w', atomictemp=True)
# write the storage version info on top of file
# version '0' represents the very initial version of the storage format
f.write('0\n\n')
olddata = set(readremotenamefile(repo, nametype))
# re-save the data from a different remote than this one.
for node, oldpath, rname in sorted(olddata):
if oldpath != remotepath:
f.write('%s\0%s\0%s\n' % (node, oldpath, rname))
for name, node in sorted(names.iteritems()):
if nametype == "branches":
for n in node:
f.write('%s\0%s\0%s\n' % (n, remotepath, name))
elif nametype == "bookmarks":
if node:
f.write('%s\0%s\0%s\n' % (node, remotepath, name))
f.close()
def saveremotenames(repo, remotepath, branches=None, bookmarks=None):
"""
save remotenames i.e. remotebookmarks and remotebranches in their
respective files under ".hg/logexchange/" directory.
"""
wlock = repo.wlock()
try:
if bookmarks:
writeremotenamefile(repo, remotepath, bookmarks, 'bookmarks')
if branches:
writeremotenamefile(repo, remotepath, branches, 'branches')
finally:
wlock.release()
def activepath(repo, remote):
"""returns remote path"""
local = None
# is the remote a local peer
local = remote.local()
# determine the remote path from the repo, if possible; else just
# use the string given to us
rpath = remote
if local:
rpath = remote._repo.root
elif not isinstance(remote, bytes):
rpath = remote._url
# represent the remotepath with user defined path name if exists
for path, url in repo.ui.configitems('paths'):
# remove auth info from user defined url
noauthurl = util.removeauth(url)
if url == rpath or noauthurl == rpath:
rpath = path
break
return rpath
def pullremotenames(localrepo, remoterepo):
"""
pulls bookmarks and branches information of the remote repo during a
pull or clone operation.
localrepo is our local repository
remoterepo is the peer instance
"""
remotepath = activepath(localrepo, remoterepo)
with remoterepo.commandexecutor() as e:
bookmarks = e.callcommand('listkeys', {
'namespace': 'bookmarks',
}).result()
# on a push, we don't want to keep obsolete heads since
# they won't show up as heads on the next pull, so we
# remove them here otherwise we would require the user
# to issue a pull to refresh the storage
bmap = {}
repo = localrepo.unfiltered()
with remoterepo.commandexecutor() as e:
branchmap = e.callcommand('branchmap', {}).result()
for branch, nodes in branchmap.iteritems():
bmap[branch] = []
for node in nodes:
if node in repo and not repo[node].obsolete():
bmap[branch].append(hex(node))
saveremotenames(localrepo, remotepath, bmap, bookmarks)