##// END OF EJS Templates
rust: fix `cargo doc` warnings...
rust: fix `cargo doc` warnings It makes sense to keep our doc build happy, even if it is lacking.

File last commit:

r52013:532e74ad default
r53203:a876ab6c default
Show More
nodemap.rs
1108 lines | 36.6 KiB | application/rls-services+xml | RustLexer
// Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
// and Mercurial contributors
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Indexing facilities for fast retrieval of `Revision` from `Node`
//!
//! This provides a variation on the 16-ary radix tree that is
//! provided as "nodetree" in revlog.c, ready for append-only persistence
//! on disk.
//!
//! Following existing implicit conventions, the "nodemap" terminology
//! is used in a more abstract context.
use crate::UncheckedRevision;
use super::{
node::NULL_NODE, Node, NodePrefix, Revision, RevlogIndex, NULL_REVISION,
};
use bytes_cast::{unaligned, BytesCast};
use std::cmp::max;
use std::fmt;
use std::mem::{self, align_of, size_of};
use std::ops::Deref;
use std::ops::Index;
#[derive(Debug, PartialEq)]
pub enum NodeMapError {
/// A `NodePrefix` matches several [`Revision`]s.
///
/// This can be returned by methods meant for (at most) one match.
MultipleResults,
/// A `Revision` stored in the nodemap could not be found in the index
RevisionNotInIndex(UncheckedRevision),
}
/// Mapping system from Mercurial nodes to revision numbers.
///
/// ## `RevlogIndex` and `NodeMap`
///
/// One way to think about their relationship is that
/// the `NodeMap` is a prefix-oriented reverse index of the [`Node`]
/// information carried by a [`RevlogIndex`].
///
/// Many of the methods in this trait take a `RevlogIndex` argument
/// which is used for validation of their results. This index must naturally
/// be the one the `NodeMap` is about, and it must be consistent.
///
/// Notably, the `NodeMap` must not store
/// information about more `Revision` values than there are in the index.
/// In these methods, an encountered `Revision` is not in the index, a
/// [RevisionNotInIndex](NodeMapError) error is returned.
///
/// In insert operations, the rule is thus that the `NodeMap` must always
/// be updated after the `RevlogIndex` it is about.
pub trait NodeMap {
/// Find the unique `Revision` having the given `Node`
///
/// If no Revision matches the given `Node`, `Ok(None)` is returned.
fn find_node(
&self,
index: &impl RevlogIndex,
node: &Node,
) -> Result<Option<Revision>, NodeMapError> {
self.find_bin(index, node.into())
}
/// Find the unique Revision whose `Node` starts with a given binary prefix
///
/// If no Revision matches the given prefix, `Ok(None)` is returned.
///
/// If several Revisions match the given prefix, a
/// [MultipleResults](NodeMapError) error is returned.
fn find_bin(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefix,
) -> Result<Option<Revision>, NodeMapError>;
/// Give the size of the shortest node prefix that determines
/// the revision uniquely.
///
/// From a binary node prefix, if it is matched in the node map, this
/// returns the number of hexadecimal digits that would had sufficed
/// to find the revision uniquely.
///
/// Returns `None` if no [`Revision`] could be found for the prefix.
///
/// If several Revisions match the given prefix, a
/// [MultipleResults](NodeMapError) error is returned.
fn unique_prefix_len_bin(
&self,
idx: &impl RevlogIndex,
node_prefix: NodePrefix,
) -> Result<Option<usize>, NodeMapError>;
/// Same as [unique_prefix_len_bin](Self::unique_prefix_len_bin), with
/// a full [`Node`] as input
fn unique_prefix_len_node(
&self,
idx: &impl RevlogIndex,
node: &Node,
) -> Result<Option<usize>, NodeMapError> {
self.unique_prefix_len_bin(idx, node.into())
}
}
pub trait MutableNodeMap: NodeMap {
fn insert<I: RevlogIndex>(
&mut self,
index: &I,
node: &Node,
rev: Revision,
) -> Result<(), NodeMapError>;
}
/// Low level NodeTree [`Block`] elements
///
/// These are exactly as for instance on persistent storage.
type RawElement = unaligned::I32Be;
/// High level representation of values in NodeTree
/// [`Blocks`](struct.Block.html)
///
/// This is the high level representation that most algorithms should
/// use.
#[derive(Clone, Debug, Eq, PartialEq)]
enum Element {
// This is not a Mercurial revision. It's a `i32` because this is the
// right type for this structure.
Rev(i32),
Block(usize),
None,
}
impl From<RawElement> for Element {
/// Conversion from low level representation, after endianness conversion.
///
/// See [`Block`](struct.Block.html) for explanation about the encoding.
fn from(raw: RawElement) -> Element {
let int = raw.get();
if int >= 0 {
Element::Block(int as usize)
} else if int == -1 {
Element::None
} else {
Element::Rev(-int - 2)
}
}
}
impl From<Element> for RawElement {
fn from(element: Element) -> RawElement {
RawElement::from(match element {
Element::None => 0,
Element::Block(i) => i as i32,
Element::Rev(rev) => -rev - 2,
})
}
}
const ELEMENTS_PER_BLOCK: usize = 16; // number of different values in a nybble
/// A logical block of the [`NodeTree`], packed with a fixed size.
///
/// These are always used in container types implementing `Index<Block>`,
/// such as `&Block`
///
/// As an array of integers, its ith element encodes that the
/// ith potential edge from the block, representing the ith hexadecimal digit
/// (nybble) `i` is either:
///
/// - absent (value -1)
/// - another `Block` in the same indexable container (value ≥ 0)
/// - a [`Revision`] leaf (value ≤ -2)
///
/// Endianness has to be fixed for consistency on shared storage across
/// different architectures.
///
/// A key difference with the C `nodetree` is that we need to be
/// able to represent the [`Block`] at index 0, hence -1 is the empty marker
/// rather than 0 and the [`Revision`] range upper limit of -2 instead of -1.
///
/// Another related difference is that `NULL_REVISION` (-1) is not
/// represented at all, because we want an immutable empty nodetree
/// to be valid.
#[derive(Copy, Clone, BytesCast, PartialEq)]
#[repr(transparent)]
pub struct Block([RawElement; ELEMENTS_PER_BLOCK]);
impl Block {
fn new() -> Self {
let absent_node = RawElement::from(-1);
Block([absent_node; ELEMENTS_PER_BLOCK])
}
fn get(&self, nybble: u8) -> Element {
self.0[nybble as usize].into()
}
fn set(&mut self, nybble: u8, element: Element) {
self.0[nybble as usize] = element.into()
}
}
impl fmt::Debug for Block {
/// sparse representation for testing and debugging purposes
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map()
.entries((0..16).filter_map(|i| match self.get(i) {
Element::None => None,
element => Some((i, element)),
}))
.finish()
}
}
/// A mutable 16-radix tree with the root block logically at the end
///
/// Because of the append only nature of our node trees, we need to
/// keep the original untouched and store new blocks separately.
///
/// The mutable root [`Block`] is kept apart so that we don't have to rebump
/// it on each insertion.
pub struct NodeTree {
readonly: Box<dyn Deref<Target = [Block]> + Send>,
growable: Vec<Block>,
root: Block,
masked_inner_blocks: usize,
}
impl Index<usize> for NodeTree {
type Output = Block;
fn index(&self, i: usize) -> &Block {
let ro_len = self.readonly.len();
if i < ro_len {
&self.readonly[i]
} else if i == ro_len + self.growable.len() {
&self.root
} else {
&self.growable[i - ro_len]
}
}
}
/// Return `None` unless the [`Node`] for `rev` has given prefix in `idx`.
fn has_prefix_or_none(
idx: &impl RevlogIndex,
prefix: NodePrefix,
rev: UncheckedRevision,
) -> Result<Option<Revision>, NodeMapError> {
match idx.check_revision(rev) {
Some(checked) => idx
.node(checked)
.ok_or(NodeMapError::RevisionNotInIndex(rev))
.map(|node| {
if prefix.is_prefix_of(node) {
Some(checked)
} else {
None
}
}),
None => Err(NodeMapError::RevisionNotInIndex(rev)),
}
}
/// validate that the candidate's node starts indeed with given prefix,
/// and treat ambiguities related to [`NULL_REVISION`].
///
/// From the data in the NodeTree, one can only conclude that some
/// revision is the only one for a *subprefix* of the one being looked up.
fn validate_candidate(
idx: &impl RevlogIndex,
prefix: NodePrefix,
candidate: (Option<UncheckedRevision>, usize),
) -> Result<(Option<Revision>, usize), NodeMapError> {
let (rev, steps) = candidate;
if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) {
rev.map_or(Ok((None, steps)), |r| {
has_prefix_or_none(idx, prefix, r)
.map(|opt| (opt, max(steps, nz_nybble + 1)))
})
} else {
// the prefix is only made of zeros; NULL_REVISION always matches it
// and any other *valid* result is an ambiguity
match rev {
None => Ok((Some(NULL_REVISION), steps + 1)),
Some(r) => match has_prefix_or_none(idx, prefix, r)? {
None => Ok((Some(NULL_REVISION), steps + 1)),
_ => Err(NodeMapError::MultipleResults),
},
}
}
}
impl NodeTree {
/// Initiate a NodeTree from an immutable slice-like of `Block`
///
/// We keep `readonly` and clone its root block if it isn't empty.
fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
let root = readonly.last().cloned().unwrap_or_else(Block::new);
NodeTree {
readonly,
growable: Vec::new(),
root,
masked_inner_blocks: 0,
}
}
/// Create from an opaque bunch of bytes
///
/// The created [`NodeTreeBytes`] from `bytes`,
/// of which exactly `amount` bytes are used.
///
/// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
/// - `amount` is expressed in bytes, and is not automatically derived from
/// `bytes`, so that a caller that manages them atomically can perform
/// temporary disk serializations and still rollback easily if needed.
/// First use-case for this would be to support Mercurial shell hooks.
///
/// panics if `buffer` is smaller than `amount`
pub fn load_bytes(
bytes: Box<dyn Deref<Target = [u8]> + Send>,
amount: usize,
) -> Self {
NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
}
/// Retrieve added [`Block`]s and the original immutable data
pub fn into_readonly_and_added(
self,
) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
let mut vec = self.growable;
let readonly = self.readonly;
if readonly.last() != Some(&self.root) {
vec.push(self.root);
}
(readonly, vec)
}
/// Retrieve added [`Block]s as bytes, ready to be written to persistent
/// storage
pub fn into_readonly_and_added_bytes(
self,
) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
let (readonly, vec) = self.into_readonly_and_added();
// Prevent running `v`'s destructor so we are in complete control
// of the allocation.
let vec = mem::ManuallyDrop::new(vec);
// Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
// bytes, so this is perfectly safe.
let bytes = unsafe {
// Check for compatible allocation layout.
// (Optimized away by constant-folding + dead code elimination.)
assert_eq!(size_of::<Block>(), 64);
assert_eq!(align_of::<Block>(), 1);
// /!\ Any use of `vec` after this is use-after-free.
// TODO: use `into_raw_parts` once stabilized
Vec::from_raw_parts(
vec.as_ptr() as *mut u8,
vec.len() * size_of::<Block>(),
vec.capacity() * size_of::<Block>(),
)
};
(readonly, bytes)
}
/// Total number of blocks
fn len(&self) -> usize {
self.readonly.len() + self.growable.len() + 1
}
/// Implemented for completeness
///
/// A `NodeTree` always has at least the mutable root block.
#[allow(dead_code)]
fn is_empty(&self) -> bool {
false
}
/// Main working method for `NodeTree` searches
///
/// The first returned value is the result of analysing `NodeTree` data
/// *alone*: whereas `None` guarantees that the given prefix is absent
/// from the [`NodeTree`] data (but still could match [`NULL_NODE`]), with
/// `Some(rev)`, it is to be understood that `rev` is the unique
/// [`Revision`] that could match the prefix. Actually, all that can
/// be inferred from
/// the `NodeTree` data is that `rev` is the revision with the longest
/// common node prefix with the given prefix.
/// We return an [`UncheckedRevision`] because we have no guarantee that
/// the revision we found is valid for the index.
///
/// The second returned value is the size of the smallest subprefix
/// of `prefix` that would give the same result, i.e. not the
/// [MultipleResults](NodeMapError) error variant (again, using only the
/// data of the [`NodeTree`]).
fn lookup(
&self,
prefix: NodePrefix,
) -> Result<(Option<UncheckedRevision>, usize), NodeMapError> {
for (i, visit_item) in self.visit(prefix).enumerate() {
if let Some(opt) = visit_item.final_revision() {
return Ok((opt, i + 1));
}
}
Err(NodeMapError::MultipleResults)
}
fn visit(&self, prefix: NodePrefix) -> NodeTreeVisitor {
NodeTreeVisitor {
nt: self,
prefix,
visit: self.len() - 1,
nybble_idx: 0,
done: false,
}
}
/// Return a mutable reference for `Block` at index `idx`.
///
/// If `idx` lies in the immutable area, then the reference is to
/// a newly appended copy.
///
/// Returns (new_idx, glen, mut_ref) where
///
/// - `new_idx` is the index of the mutable `Block`
/// - `mut_ref` is a mutable reference to the mutable Block.
/// - `glen` is the new length of `self.growable`
///
/// Note: the caller wouldn't be allowed to query `self.growable.len()`
/// itself because of the mutable borrow taken with the returned `Block`
fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
let ro_blocks = &self.readonly;
let ro_len = ro_blocks.len();
let glen = self.growable.len();
if idx < ro_len {
self.masked_inner_blocks += 1;
self.growable.push(ro_blocks[idx]);
(glen + ro_len, &mut self.growable[glen], glen + 1)
} else if glen + ro_len == idx {
(idx, &mut self.root, glen)
} else {
(idx, &mut self.growable[idx - ro_len], glen)
}
}
/// Main insertion method
///
/// This will dive in the node tree to find the deepest `Block` for
/// `node`, split it as much as needed and record `node` in there.
/// The method then backtracks, updating references in all the visited
/// blocks from the root.
///
/// All the mutated `Block` are copied first to the growable part if
/// needed. That happens for those in the immutable part except the root.
pub fn insert<I: RevlogIndex>(
&mut self,
index: &I,
node: &Node,
rev: Revision,
) -> Result<(), NodeMapError> {
let ro_len = &self.readonly.len();
let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
let read_nybbles = visit_steps.len();
// visit_steps cannot be empty, since we always visit the root block
let deepest = visit_steps.pop().unwrap();
let (mut block_idx, mut block, mut glen) =
self.mutable_block(deepest.block_idx);
if let Element::Rev(old_rev) = deepest.element {
let old_node = index
.check_revision(old_rev.into())
.and_then(|rev| index.node(rev))
.ok_or_else(|| {
NodeMapError::RevisionNotInIndex(old_rev.into())
})?;
if old_node == node {
return Ok(()); // avoid creating lots of useless blocks
}
// Looping over the tail of nybbles in both nodes, creating
// new blocks until we find the difference
let mut new_block_idx = ro_len + glen;
let mut nybble = deepest.nybble;
for nybble_pos in read_nybbles..node.nybbles_len() {
block.set(nybble, Element::Block(new_block_idx));
let new_nybble = node.get_nybble(nybble_pos);
let old_nybble = old_node.get_nybble(nybble_pos);
if old_nybble == new_nybble {
self.growable.push(Block::new());
block = &mut self.growable[glen];
glen += 1;
new_block_idx += 1;
nybble = new_nybble;
} else {
let mut new_block = Block::new();
new_block.set(old_nybble, Element::Rev(old_rev));
new_block.set(new_nybble, Element::Rev(rev.0));
self.growable.push(new_block);
break;
}
}
} else {
// Free slot in the deepest block: no splitting has to be done
block.set(deepest.nybble, Element::Rev(rev.0));
}
// Backtrack over visit steps to update references
while let Some(visited) = visit_steps.pop() {
let to_write = Element::Block(block_idx);
if visit_steps.is_empty() {
self.root.set(visited.nybble, to_write);
break;
}
let (new_idx, block, _) = self.mutable_block(visited.block_idx);
if block.get(visited.nybble) == to_write {
break;
}
block.set(visited.nybble, to_write);
block_idx = new_idx;
}
Ok(())
}
/// Make the whole `NodeTree` logically empty, without touching the
/// immutable part.
pub fn invalidate_all(&mut self) {
self.root = Block::new();
self.growable = Vec::new();
self.masked_inner_blocks = self.readonly.len();
}
/// Return the number of blocks in the readonly part that are currently
/// masked in the mutable part.
///
/// The `NodeTree` structure has no efficient way to know how many blocks
/// are already unreachable in the readonly part.
///
/// After a call to `invalidate_all()`, the returned number can be actually
/// bigger than the whole readonly part, a conventional way to mean that
/// all the readonly blocks have been masked. This is what is really
/// useful to the caller and does not require to know how many were
/// actually unreachable to begin with.
pub fn masked_readonly_blocks(&self) -> usize {
if let Some(readonly_root) = self.readonly.last() {
if readonly_root == &self.root {
return 0;
}
} else {
return 0;
}
self.masked_inner_blocks + 1
}
}
pub struct NodeTreeBytes {
buffer: Box<dyn Deref<Target = [u8]> + Send>,
len_in_blocks: usize,
}
impl NodeTreeBytes {
fn new(
buffer: Box<dyn Deref<Target = [u8]> + Send>,
amount: usize,
) -> Self {
assert!(buffer.len() >= amount);
let len_in_blocks = amount / size_of::<Block>();
NodeTreeBytes {
buffer,
len_in_blocks,
}
}
}
impl Deref for NodeTreeBytes {
type Target = [Block];
fn deref(&self) -> &[Block] {
Block::slice_from_bytes(&self.buffer, self.len_in_blocks)
// `NodeTreeBytes::new` already asserted that `self.buffer` is
// large enough.
.unwrap()
.0
}
}
struct NodeTreeVisitor<'n> {
nt: &'n NodeTree,
prefix: NodePrefix,
visit: usize,
nybble_idx: usize,
done: bool,
}
#[derive(Debug, PartialEq, Clone)]
struct NodeTreeVisitItem {
block_idx: usize,
nybble: u8,
element: Element,
}
impl<'n> Iterator for NodeTreeVisitor<'n> {
type Item = NodeTreeVisitItem;
fn next(&mut self) -> Option<Self::Item> {
if self.done || self.nybble_idx >= self.prefix.nybbles_len() {
return None;
}
let nybble = self.prefix.get_nybble(self.nybble_idx);
self.nybble_idx += 1;
let visit = self.visit;
let element = self.nt[visit].get(nybble);
if let Element::Block(idx) = element {
self.visit = idx;
} else {
self.done = true;
}
Some(NodeTreeVisitItem {
block_idx: visit,
nybble,
element,
})
}
}
impl NodeTreeVisitItem {
// Return `Some(opt)` if this item is final, with `opt` being the
// `UncheckedRevision` that it may represent.
//
// If the item is not terminal, return `None`
fn final_revision(&self) -> Option<Option<UncheckedRevision>> {
match self.element {
Element::Block(_) => None,
Element::Rev(r) => Some(Some(r.into())),
Element::None => Some(None),
}
}
}
impl From<Vec<Block>> for NodeTree {
fn from(vec: Vec<Block>) -> Self {
Self::new(Box::new(vec))
}
}
impl fmt::Debug for NodeTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let readonly: &[Block] = &self.readonly;
write!(
f,
"readonly: {:?}, growable: {:?}, root: {:?}",
readonly, self.growable, self.root
)
}
}
impl Default for NodeTree {
/// Create a fully mutable empty NodeTree
fn default() -> Self {
NodeTree::new(Box::<Vec<_>>::default())
}
}
impl NodeMap for NodeTree {
fn find_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefix,
) -> Result<Option<Revision>, NodeMapError> {
validate_candidate(idx, prefix, self.lookup(prefix)?)
.map(|(opt, _shortest)| opt)
}
fn unique_prefix_len_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefix,
) -> Result<Option<usize>, NodeMapError> {
validate_candidate(idx, prefix, self.lookup(prefix)?)
.map(|(opt, shortest)| opt.map(|_rev| shortest))
}
}
#[cfg(test)]
pub mod tests {
use super::NodeMapError::*;
use super::*;
use crate::revlog::node::{hex_pad_right, Node};
use std::collections::HashMap;
/// Creates a `Block` using a syntax close to the `Debug` output
macro_rules! block {
{$($nybble:tt : $variant:ident($val:tt)),*} => (
{
let mut block = Block::new();
$(block.set($nybble, Element::$variant($val)));*;
block
}
)
}
/// Shorthand to reduce boilerplate when creating [`Revision`] for testing
macro_rules! R {
($revision:literal) => {
Revision($revision)
};
}
#[test]
fn test_block_debug() {
let mut block = Block::new();
block.set(1, Element::Rev(3));
block.set(10, Element::Block(0));
assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
}
#[test]
fn test_block_macro() {
let block = block! {5: Block(2)};
assert_eq!(format!("{:?}", block), "{5: Block(2)}");
let block = block! {13: Rev(15), 5: Block(2)};
assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
}
#[test]
fn test_raw_block() {
let mut raw = [255u8; 64];
let mut counter = 0;
for val in [0_i32, 15, -2, -1, -3].iter() {
for byte in val.to_be_bytes().iter() {
raw[counter] = *byte;
counter += 1;
}
}
let (block, _) = Block::from_bytes(&raw).unwrap();
assert_eq!(block.get(0), Element::Block(0));
assert_eq!(block.get(1), Element::Block(15));
assert_eq!(block.get(3), Element::None);
assert_eq!(block.get(2), Element::Rev(0));
assert_eq!(block.get(4), Element::Rev(1));
}
type TestIndex = HashMap<UncheckedRevision, Node>;
impl RevlogIndex for TestIndex {
fn node(&self, rev: Revision) -> Option<&Node> {
self.get(&rev.into())
}
fn len(&self) -> usize {
self.len()
}
fn check_revision(&self, rev: UncheckedRevision) -> Option<Revision> {
self.get(&rev).map(|_| Revision(rev.0))
}
}
/// Pad hexadecimal Node prefix with zeros on the right
///
/// This avoids having to repeatedly write very long hexadecimal
/// strings for test data, and brings actual hash size independency.
#[cfg(test)]
fn pad_node(hex: &str) -> Node {
Node::from_hex(hex_pad_right(hex)).unwrap()
}
/// Pad hexadecimal Node prefix with zeros on the right, then insert
fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
idx.insert(rev.into(), pad_node(hex));
}
fn sample_nodetree() -> NodeTree {
NodeTree::from(vec![
block![0: Rev(9)],
block![0: Rev(0), 1: Rev(9)],
block![0: Block(1), 1:Rev(1)],
])
}
fn hex(s: &str) -> NodePrefix {
NodePrefix::from_hex(s).unwrap()
}
#[test]
fn test_nt_debug() {
let nt = sample_nodetree();
assert_eq!(
format!("{:?}", nt),
"readonly: \
[{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
growable: [], \
root: {0: Block(1), 1: Rev(1)}",
);
}
#[test]
fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
let mut idx: TestIndex = HashMap::new();
pad_insert(&mut idx, R!(1), "1234deadcafe");
let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
assert_eq!(nt.find_bin(&idx, hex("1"))?, Some(R!(1)));
assert_eq!(nt.find_bin(&idx, hex("12"))?, Some(R!(1)));
assert_eq!(nt.find_bin(&idx, hex("1234de"))?, Some(R!(1)));
assert_eq!(nt.find_bin(&idx, hex("1a"))?, None);
assert_eq!(nt.find_bin(&idx, hex("ab"))?, None);
// and with full binary Nodes
assert_eq!(
nt.find_node(&idx, idx.get(&1.into()).unwrap())?,
Some(R!(1))
);
let unknown = Node::from_hex(hex_pad_right("3d")).unwrap();
assert_eq!(nt.find_node(&idx, &unknown)?, None);
Ok(())
}
#[test]
fn test_immutable_find_one_jump() {
let mut idx = TestIndex::new();
pad_insert(&mut idx, R!(9), "012");
pad_insert(&mut idx, R!(0), "00a");
let nt = sample_nodetree();
assert_eq!(nt.find_bin(&idx, hex("0")), Err(MultipleResults));
assert_eq!(nt.find_bin(&idx, hex("01")), Ok(Some(R!(9))));
assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
assert_eq!(nt.find_bin(&idx, hex("00a")), Ok(Some(R!(0))));
assert_eq!(nt.unique_prefix_len_bin(&idx, hex("00a")), Ok(Some(3)));
assert_eq!(nt.find_bin(&idx, hex("000")), Ok(Some(NULL_REVISION)));
}
#[test]
fn test_mutated_find() -> Result<(), NodeMapError> {
let mut idx = TestIndex::new();
pad_insert(&mut idx, R!(9), "012");
pad_insert(&mut idx, R!(0), "00a");
pad_insert(&mut idx, R!(2), "cafe");
pad_insert(&mut idx, R!(3), "15");
pad_insert(&mut idx, R!(1), "10");
let nt = NodeTree {
readonly: sample_nodetree().readonly,
growable: vec![block![0: Rev(1), 5: Rev(3)]],
root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
masked_inner_blocks: 1,
};
assert_eq!(nt.find_bin(&idx, hex("10"))?, Some(R!(1)));
assert_eq!(nt.find_bin(&idx, hex("c"))?, Some(R!(2)));
assert_eq!(nt.unique_prefix_len_bin(&idx, hex("c"))?, Some(1));
assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
assert_eq!(nt.find_bin(&idx, hex("000"))?, Some(NULL_REVISION));
assert_eq!(nt.unique_prefix_len_bin(&idx, hex("000"))?, Some(3));
assert_eq!(nt.find_bin(&idx, hex("01"))?, Some(R!(9)));
assert_eq!(nt.masked_readonly_blocks(), 2);
Ok(())
}
pub struct TestNtIndex {
pub index: TestIndex,
pub nt: NodeTree,
}
impl TestNtIndex {
pub fn new() -> Self {
TestNtIndex {
index: HashMap::new(),
nt: NodeTree::default(),
}
}
pub fn insert_node(
&mut self,
rev: Revision,
node: Node,
) -> Result<(), NodeMapError> {
self.index.insert(rev.into(), node);
self.nt.insert(&self.index, &node, rev)?;
Ok(())
}
pub fn insert(
&mut self,
rev: Revision,
hex: &str,
) -> Result<(), NodeMapError> {
let node = pad_node(hex);
self.insert_node(rev, node)
}
fn find_hex(
&self,
prefix: &str,
) -> Result<Option<Revision>, NodeMapError> {
self.nt.find_bin(&self.index, hex(prefix))
}
fn unique_prefix_len_hex(
&self,
prefix: &str,
) -> Result<Option<usize>, NodeMapError> {
self.nt.unique_prefix_len_bin(&self.index, hex(prefix))
}
/// Drain `added` and restart a new one
fn commit(self) -> Self {
let mut as_vec: Vec<Block> =
self.nt.readonly.iter().copied().collect();
as_vec.extend(self.nt.growable);
as_vec.push(self.nt.root);
Self {
index: self.index,
nt: NodeTree::from(as_vec),
}
}
}
impl Default for TestNtIndex {
fn default() -> Self {
Self::new()
}
}
#[test]
fn test_insert_full_mutable() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(Revision(0), "1234")?;
assert_eq!(idx.find_hex("1")?, Some(R!(0)));
assert_eq!(idx.find_hex("12")?, Some(R!(0)));
// let's trigger a simple split
idx.insert(Revision(1), "1a34")?;
assert_eq!(idx.nt.growable.len(), 1);
assert_eq!(idx.find_hex("12")?, Some(R!(0)));
assert_eq!(idx.find_hex("1a")?, Some(R!(1)));
// reinserting is a no_op
idx.insert(Revision(1), "1a34")?;
assert_eq!(idx.nt.growable.len(), 1);
assert_eq!(idx.find_hex("12")?, Some(R!(0)));
assert_eq!(idx.find_hex("1a")?, Some(R!(1)));
idx.insert(Revision(2), "1a01")?;
assert_eq!(idx.nt.growable.len(), 2);
assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
assert_eq!(idx.find_hex("12")?, Some(R!(0)));
assert_eq!(idx.find_hex("1a3")?, Some(R!(1)));
assert_eq!(idx.find_hex("1a0")?, Some(R!(2)));
assert_eq!(idx.find_hex("1a12")?, None);
// now let's make it split and create more than one additional block
idx.insert(Revision(3), "1a345")?;
assert_eq!(idx.nt.growable.len(), 4);
assert_eq!(idx.find_hex("1a340")?, Some(R!(1)));
assert_eq!(idx.find_hex("1a345")?, Some(R!(3)));
assert_eq!(idx.find_hex("1a341")?, None);
// there's no readonly block to mask
assert_eq!(idx.nt.masked_readonly_blocks(), 0);
Ok(())
}
#[test]
fn test_unique_prefix_len_zero_prefix() {
let mut idx = TestNtIndex::new();
idx.insert(Revision(0), "00000abcd").unwrap();
assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults));
// in the nodetree proper, this will be found at the first nybble
// yet the correct answer for unique_prefix_len is not 1, nor 1+1,
// but the first difference with `NULL_NODE`
assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
// same with odd result
idx.insert(Revision(1), "00123").unwrap();
assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3)));
assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3)));
// these are unchanged of course
assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
}
#[test]
fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
// check that the splitting loop is long enough
let mut nt_idx = TestNtIndex::new();
let nt = &mut nt_idx.nt;
let idx = &mut nt_idx.index;
let node0_hex = hex_pad_right("444444");
let mut node1_hex = hex_pad_right("444444");
node1_hex.pop();
node1_hex.push('5');
let node0 = Node::from_hex(node0_hex).unwrap();
let node1 = Node::from_hex(&node1_hex).unwrap();
idx.insert(0.into(), node0);
nt.insert(idx, &node0, R!(0))?;
idx.insert(1.into(), node1);
nt.insert(idx, &node1, R!(1))?;
assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(R!(0)));
assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(R!(1)));
Ok(())
}
#[test]
fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(Revision(0), "1234")?;
idx.insert(Revision(1), "1235")?;
idx.insert(Revision(2), "131")?;
idx.insert(Revision(3), "cafe")?;
let mut idx = idx.commit();
assert_eq!(idx.find_hex("1234")?, Some(R!(0)));
assert_eq!(idx.find_hex("1235")?, Some(R!(1)));
assert_eq!(idx.find_hex("131")?, Some(R!(2)));
assert_eq!(idx.find_hex("cafe")?, Some(R!(3)));
// we did not add anything since init from readonly
assert_eq!(idx.nt.masked_readonly_blocks(), 0);
idx.insert(Revision(4), "123A")?;
assert_eq!(idx.find_hex("1234")?, Some(R!(0)));
assert_eq!(idx.find_hex("1235")?, Some(R!(1)));
assert_eq!(idx.find_hex("131")?, Some(R!(2)));
assert_eq!(idx.find_hex("cafe")?, Some(R!(3)));
assert_eq!(idx.find_hex("123A")?, Some(R!(4)));
// we masked blocks for all prefixes of "123", including the root
assert_eq!(idx.nt.masked_readonly_blocks(), 4);
eprintln!("{:?}", idx.nt);
idx.insert(Revision(5), "c0")?;
assert_eq!(idx.find_hex("cafe")?, Some(R!(3)));
assert_eq!(idx.find_hex("c0")?, Some(R!(5)));
assert_eq!(idx.find_hex("c1")?, None);
assert_eq!(idx.find_hex("1234")?, Some(R!(0)));
// inserting "c0" is just splitting the 'c' slot of the mutable root,
// it doesn't mask anything
assert_eq!(idx.nt.masked_readonly_blocks(), 4);
Ok(())
}
#[test]
fn test_invalidate_all() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(Revision(0), "1234")?;
idx.insert(Revision(1), "1235")?;
idx.insert(Revision(2), "131")?;
idx.insert(Revision(3), "cafe")?;
let mut idx = idx.commit();
idx.nt.invalidate_all();
assert_eq!(idx.find_hex("1234")?, None);
assert_eq!(idx.find_hex("1235")?, None);
assert_eq!(idx.find_hex("131")?, None);
assert_eq!(idx.find_hex("cafe")?, None);
// all the readonly blocks have been masked, this is the
// conventional expected response
assert_eq!(idx.nt.masked_readonly_blocks(), idx.nt.readonly.len() + 1);
Ok(())
}
#[test]
fn test_into_added_empty() {
assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
assert!(sample_nodetree()
.into_readonly_and_added_bytes()
.1
.is_empty());
}
#[test]
fn test_into_added_bytes() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(Revision(0), "1234")?;
let mut idx = idx.commit();
idx.insert(Revision(4), "cafe")?;
let (_, bytes) = idx.nt.into_readonly_and_added_bytes();
// only the root block has been changed
assert_eq!(bytes.len(), size_of::<Block>());
// big endian for -2
assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
// big endian for -6
assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
Ok(())
}
}