##// END OF EJS Templates
Added support for hg:// and old-http:// to 'hg clone'....
Added support for hg:// and old-http:// to 'hg clone'. -----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 Added support for hg:// and old-http:// to 'hg clone'. manifest hash: 4292cc7927afbec5663b5fff4317a238fb65cdec -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.1 (GNU/Linux) iD8DBQFCw44lW7P1GVgWeRoRArWzAJ9AjiCF7poldqFxshV+lAyHZKy2PACgpCt1 KTdmdp+AL6m953NnYc5QNbo= =BWbr -----END PGP SIGNATURE-----

File last commit:

r531:0e9234a1 default
r541:abaea353 default
Show More
revlog.py
538 lines | 16.6 KiB | text/x-python | PythonLexer
# revlog.py - storage back-end for mercurial
#
# This provides efficient delta storage with O(1) retrieve and append
# and O(changes) merge between branches
#
# Copyright 2005 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms
# of the GNU General Public License, incorporated herein by reference.
import zlib, struct, sha, binascii, heapq
from mercurial import mdiff
def hex(node): return binascii.hexlify(node)
def bin(node): return binascii.unhexlify(node)
def short(node): return hex(node[:6])
def compress(text):
if not text: return text
if len(text) < 44:
if text[0] == '\0': return text
return 'u' + text
bin = zlib.compress(text)
if len(bin) > len(text):
if text[0] == '\0': return text
return 'u' + text
return bin
def decompress(bin):
if not bin: return bin
t = bin[0]
if t == '\0': return bin
if t == 'x': return zlib.decompress(bin)
if t == 'u': return bin[1:]
raise "unknown compression type %s" % t
def hash(text, p1, p2):
l = [p1, p2]
l.sort()
return sha.sha(l[0] + l[1] + text).digest()
nullid = "\0" * 20
indexformat = ">4l20s20s20s"
class lazyparser:
def __init__(self, data, revlog):
self.data = data
self.s = struct.calcsize(indexformat)
self.l = len(data)/self.s
self.index = [None] * self.l
self.map = {nullid: -1}
self.all = 0
self.revlog = revlog
def load(self, pos=None):
if self.all: return
if pos is not None:
block = pos / 1000
i = block * 1000
end = min(self.l, i + 1000)
else:
self.all = 1
i = 0
end = self.l
self.revlog.index = self.index
self.revlog.nodemap = self.map
while i < end:
d = self.data[i * self.s: (i + 1) * self.s]
e = struct.unpack(indexformat, d)
self.index[i] = e
self.map[e[6]] = i
i += 1
class lazyindex:
def __init__(self, parser):
self.p = parser
def __len__(self):
return len(self.p.index)
def load(self, pos):
self.p.load(pos)
return self.p.index[pos]
def __getitem__(self, pos):
return self.p.index[pos] or self.load(pos)
def append(self, e):
self.p.index.append(e)
class lazymap:
def __init__(self, parser):
self.p = parser
def load(self, key):
if self.p.all: return
n = self.p.data.find(key)
if n < 0: raise KeyError("node " + hex(key))
pos = n / self.p.s
self.p.load(pos)
def __contains__(self, key):
self.p.load()
return key in self.p.map
def __iter__(self):
yield nullid
for i in xrange(self.p.l):
try:
yield self.p.index[i][6]
except:
self.p.load(i)
yield self.p.index[i][6]
def __getitem__(self, key):
try:
return self.p.map[key]
except KeyError:
try:
self.load(key)
return self.p.map[key]
except KeyError:
raise KeyError("node " + hex(key))
def __setitem__(self, key, val):
self.p.map[key] = val
class revlog:
def __init__(self, opener, indexfile, datafile):
self.indexfile = indexfile
self.datafile = datafile
self.opener = opener
self.cache = None
try:
i = self.opener(self.indexfile).read()
except IOError:
i = ""
if len(i) > 10000:
# big index, let's parse it on demand
parser = lazyparser(i, self)
self.index = lazyindex(parser)
self.nodemap = lazymap(parser)
else:
s = struct.calcsize(indexformat)
l = len(i) / s
self.index = [None] * l
m = [None] * l
n = 0
for f in xrange(0, len(i), s):
# offset, size, base, linkrev, p1, p2, nodeid
e = struct.unpack(indexformat, i[f:f + s])
m[n] = (e[6], n)
self.index[n] = e
n += 1
self.nodemap = dict(m)
self.nodemap[nullid] = -1
def tip(self): return self.node(len(self.index) - 1)
def count(self): return len(self.index)
def node(self, rev): return (rev < 0) and nullid or self.index[rev][6]
def rev(self, node): return self.nodemap[node]
def linkrev(self, node): return self.index[self.nodemap[node]][3]
def parents(self, node):
if node == nullid: return (nullid, nullid)
return self.index[self.nodemap[node]][4:6]
def start(self, rev): return self.index[rev][0]
def length(self, rev): return self.index[rev][1]
def end(self, rev): return self.start(rev) + self.length(rev)
def base(self, rev): return self.index[rev][2]
def heads(self):
p = {}
h = []
for r in range(self.count() - 1, -1, -1):
n = self.node(r)
if n not in p:
h.append(n)
for pn in self.parents(n):
p[pn] = 1
return h
def children(self, node):
c = []
p = self.rev(node)
for r in range(p + 1, self.count()):
n = self.node(r)
for pn in self.parents(n):
if pn == p:
c.append(p)
continue
elif pn == nullid:
continue
return c
def lookup(self, id):
try:
rev = int(id)
if str(rev) != id: raise ValueError
if rev < 0: rev = self.count() + rev
if rev < 0 or rev >= self.count(): raise ValueError
return self.node(rev)
except (ValueError, OverflowError):
c = []
for n in self.nodemap:
if hex(n).startswith(id):
c.append(n)
if len(c) > 1: raise KeyError("Ambiguous identifier")
if len(c) < 1: raise KeyError("No match found")
return c[0]
return None
def diff(self, a, b):
return mdiff.textdiff(a, b)
def patches(self, t, pl):
return mdiff.patches(t, pl)
def delta(self, node):
r = self.rev(node)
b = self.base(r)
if r == b:
return self.diff(self.revision(self.node(r - 1)),
self.revision(node))
else:
f = self.opener(self.datafile)
f.seek(self.start(r))
data = f.read(self.length(r))
return decompress(data)
def revision(self, node):
if node == nullid: return ""
if self.cache and self.cache[0] == node: return self.cache[2]
text = None
rev = self.rev(node)
start, length, base, link, p1, p2, node = self.index[rev]
end = start + length
if base != rev: start = self.start(base)
if self.cache and self.cache[1] >= base and self.cache[1] < rev:
base = self.cache[1]
start = self.start(base + 1)
text = self.cache[2]
last = 0
f = self.opener(self.datafile)
f.seek(start)
data = f.read(end - start)
if not text:
last = self.length(base)
text = decompress(data[:last])
bins = []
for r in xrange(base + 1, rev + 1):
s = self.length(r)
bins.append(decompress(data[last:last + s]))
last = last + s
text = mdiff.patches(text, bins)
if node != hash(text, p1, p2):
raise IOError("integrity check failed on %s:%d"
% (self.datafile, rev))
self.cache = (node, rev, text)
return text
def addrevision(self, text, transaction, link, p1=None, p2=None):
if text is None: text = ""
if p1 is None: p1 = self.tip()
if p2 is None: p2 = nullid
node = hash(text, p1, p2)
if node in self.nodemap:
return node
n = self.count()
t = n - 1
if n:
base = self.base(t)
start = self.start(base)
end = self.end(t)
prev = self.revision(self.tip())
d = self.diff(prev, text)
data = compress(d)
dist = end - start + len(data)
# full versions are inserted when the needed deltas
# become comparable to the uncompressed text
if not n or dist > len(text) * 2:
data = compress(text)
base = n
else:
base = self.base(t)
offset = 0
if t >= 0:
offset = self.end(t)
e = (offset, len(data), base, link, p1, p2, node)
self.index.append(e)
self.nodemap[node] = n
entry = struct.pack(indexformat, *e)
transaction.add(self.datafile, e[0])
self.opener(self.datafile, "a").write(data)
transaction.add(self.indexfile, n * len(entry))
self.opener(self.indexfile, "a").write(entry)
self.cache = (node, n, text)
return node
def ancestor(self, a, b):
# calculate the distance of every node from root
dist = {nullid: 0}
for i in xrange(self.count()):
n = self.node(i)
p1, p2 = self.parents(n)
dist[n] = max(dist[p1], dist[p2]) + 1
# traverse ancestors in order of decreasing distance from root
def ancestors(node):
# we store negative distances because heap returns smallest member
h = [(-dist[node], node)]
seen = {}
earliest = self.count()
while h:
d, n = heapq.heappop(h)
if n not in seen:
seen[n] = 1
r = self.rev(n)
yield (-d, r, n)
for p in self.parents(n):
heapq.heappush(h, (-dist[p], p))
x = ancestors(a)
y = ancestors(b)
lx = x.next()
ly = y.next()
# increment each ancestor list until it is closer to root than
# the other, or they match
while 1:
if lx == ly:
return lx[2]
elif lx < ly:
ly = y.next()
elif lx > ly:
lx = x.next()
def group(self, linkmap):
# given a list of changeset revs, return a set of deltas and
# metadata corresponding to nodes. the first delta is
# parent(nodes[0]) -> nodes[0] the receiver is guaranteed to
# have this parent as it has all history before these
# changesets. parent is parent[0]
revs = []
needed = {}
# find file nodes/revs that match changeset revs
for i in xrange(0, self.count()):
if self.index[i][3] in linkmap:
revs.append(i)
needed[i] = 1
# if we don't have any revisions touched by these changesets, bail
if not revs:
yield struct.pack(">l", 0)
return
# add the parent of the first rev
p = self.parents(self.node(revs[0]))[0]
revs.insert(0, self.rev(p))
# for each delta that isn't contiguous in the log, we need to
# reconstruct the base, reconstruct the result, and then
# calculate the delta. We also need to do this where we've
# stored a full version and not a delta
for i in xrange(0, len(revs) - 1):
a, b = revs[i], revs[i + 1]
if a + 1 != b or self.base(b) == b:
for j in xrange(self.base(a), a + 1):
needed[j] = 1
for j in xrange(self.base(b), b + 1):
needed[j] = 1
# calculate spans to retrieve from datafile
needed = needed.keys()
needed.sort()
spans = []
oo = -1
ol = 0
for n in needed:
if n < 0: continue
o = self.start(n)
l = self.length(n)
if oo + ol == o: # can we merge with the previous?
nl = spans[-1][2]
nl.append((n, l))
ol += l
spans[-1] = (oo, ol, nl)
else:
oo = o
ol = l
spans.append((oo, ol, [(n, l)]))
# read spans in, divide up chunks
chunks = {}
for span in spans:
# we reopen the file for each span to make http happy for now
f = self.opener(self.datafile)
f.seek(span[0])
data = f.read(span[1])
# divide up the span
pos = 0
for r, l in span[2]:
chunks[r] = decompress(data[pos: pos + l])
pos += l
# helper to reconstruct intermediate versions
def construct(text, base, rev):
bins = [chunks[r] for r in xrange(base + 1, rev + 1)]
return mdiff.patches(text, bins)
# build deltas
deltas = []
for d in xrange(0, len(revs) - 1):
a, b = revs[d], revs[d + 1]
n = self.node(b)
# do we need to construct a new delta?
if a + 1 != b or self.base(b) == b:
if a >= 0:
base = self.base(a)
ta = chunks[self.base(a)]
ta = construct(ta, base, a)
else:
ta = ""
base = self.base(b)
if a > base:
base = a
tb = ta
else:
tb = chunks[self.base(b)]
tb = construct(tb, base, b)
d = self.diff(ta, tb)
else:
d = chunks[b]
p = self.parents(n)
meta = n + p[0] + p[1] + linkmap[self.linkrev(n)]
l = struct.pack(">l", len(meta) + len(d) + 4)
yield l
yield meta
yield d
yield struct.pack(">l", 0)
def addgroup(self, revs, linkmapper, transaction, unique = 0):
# given a set of deltas, add them to the revision log. the
# first delta is against its parent, which should be in our
# log, the rest are against the previous delta.
# track the base of the current delta log
r = self.count()
t = r - 1
node = nullid
base = prev = -1
start = end = 0
if r:
start = self.start(self.base(t))
end = self.end(t)
measure = self.length(self.base(t))
base = self.base(t)
prev = self.tip()
transaction.add(self.datafile, end)
transaction.add(self.indexfile, r * struct.calcsize(indexformat))
dfh = self.opener(self.datafile, "a")
ifh = self.opener(self.indexfile, "a")
# loop through our set of deltas
chain = None
for chunk in revs:
node, p1, p2, cs = struct.unpack("20s20s20s20s", chunk[:80])
link = linkmapper(cs)
if node in self.nodemap:
# this can happen if two branches make the same change
if unique:
raise "already have %s" % hex(node[:4])
continue
delta = chunk[80:]
if not chain:
# retrieve the parent revision of the delta chain
chain = p1
if not chain in self.nodemap:
raise "unknown base %s" % short(chain[:4])
# full versions are inserted when the needed deltas become
# comparable to the uncompressed text or when the previous
# version is not the one we have a delta against. We use
# the size of the previous full rev as a proxy for the
# current size.
if chain == prev:
cdelta = compress(delta)
if chain != prev or (end - start + len(cdelta)) > measure * 2:
# flush our writes here so we can read it in revision
dfh.flush()
ifh.flush()
text = self.revision(chain)
text = self.patches(text, [delta])
chk = self.addrevision(text, transaction, link, p1, p2)
if chk != node:
raise "consistency error adding group"
measure = len(text)
else:
e = (end, len(cdelta), self.base(t), link, p1, p2, node)
self.index.append(e)
self.nodemap[node] = r
dfh.write(cdelta)
ifh.write(struct.pack(indexformat, *e))
t, r, chain, prev = r, r + 1, node, node
start = self.start(self.base(t))
end = self.end(t)
dfh.close()
ifh.close()
return node