##// END OF EJS Templates
py3: drop incorrect fsencode(findexe(...)) in procutil...
py3: drop incorrect fsencode(findexe(...)) in procutil I recently added the bad call, thinking that findexe() was a standard library function returning a string result, but it's actually our own function returning bytes. Thanks to Yuya for noticing. Differential Revision: https://phab.mercurial-scm.org/D6826

File last commit:

r43117:64e28b89 default
r43152:acf80f9e default
Show More
ref_sharing.rs
439 lines | 13.4 KiB | application/rls-services+xml | RustLexer
// macros.rs
//
// Copyright 2019 Raphaël Gomès <rgomes@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Macros for use in the `hg-cpython` bridge library.
use crate::exceptions::AlreadyBorrowed;
use cpython::{PyResult, Python};
use std::cell::{Cell, Ref, RefCell, RefMut};
/// Manages the shared state between Python and Rust
#[derive(Default)]
pub struct PySharedState {
leak_count: Cell<usize>,
mutably_borrowed: Cell<bool>,
}
impl PySharedState {
pub fn borrow_mut<'a, T>(
&'a self,
py: Python<'a>,
pyrefmut: RefMut<'a, T>,
) -> PyResult<PyRefMut<'a, T>> {
if self.mutably_borrowed.get() {
return Err(AlreadyBorrowed::new(
py,
"Cannot borrow mutably while there exists another \
mutable reference in a Python object",
));
}
match self.leak_count.get() {
0 => {
self.mutably_borrowed.replace(true);
Ok(PyRefMut::new(py, pyrefmut, self))
}
// TODO
// For now, this works differently than Python references
// in the case of iterators.
// Python does not complain when the data an iterator
// points to is modified if the iterator is never used
// afterwards.
// Here, we are stricter than this by refusing to give a
// mutable reference if it is already borrowed.
// While the additional safety might be argued for, it
// breaks valid programming patterns in Python and we need
// to fix this issue down the line.
_ => Err(AlreadyBorrowed::new(
py,
"Cannot borrow mutably while there are \
immutable references in Python objects",
)),
}
}
/// Return a reference to the wrapped data with an artificial static
/// lifetime.
/// We need to be protected by the GIL for thread-safety.
///
/// # Safety
///
/// This is highly unsafe since the lifetime of the given data can be
/// extended. Do not call this function directly.
pub unsafe fn leak_immutable<T>(
&self,
py: Python,
data: &PySharedRefCell<T>,
) -> PyResult<&'static T> {
if self.mutably_borrowed.get() {
return Err(AlreadyBorrowed::new(
py,
"Cannot borrow immutably while there is a \
mutable reference in Python objects",
));
}
let ptr = data.as_ptr();
self.leak_count.replace(self.leak_count.get() + 1);
Ok(&*ptr)
}
/// # Safety
///
/// It's unsafe to update the reference count without knowing the
/// reference is deleted. Do not call this function directly.
pub unsafe fn decrease_leak_count(&self, _py: Python, mutable: bool) {
self.leak_count
.replace(self.leak_count.get().saturating_sub(1));
if mutable {
self.mutably_borrowed.replace(false);
}
}
}
/// `RefCell` wrapper to be safely used in conjunction with `PySharedState`.
///
/// Only immutable operation is allowed through this interface.
#[derive(Debug)]
pub struct PySharedRefCell<T> {
inner: RefCell<T>,
}
impl<T> PySharedRefCell<T> {
pub const fn new(value: T) -> PySharedRefCell<T> {
Self {
inner: RefCell::new(value),
}
}
pub fn borrow(&self) -> Ref<T> {
// py_shared_state isn't involved since
// - inner.borrow() would fail if self is mutably borrowed,
// - and inner.borrow_mut() would fail while self is borrowed.
self.inner.borrow()
}
pub fn as_ptr(&self) -> *mut T {
self.inner.as_ptr()
}
pub unsafe fn borrow_mut(&self) -> RefMut<T> {
// must be borrowed by self.py_shared_state(py).borrow_mut().
self.inner.borrow_mut()
}
}
/// Holds a mutable reference to data shared between Python and Rust.
pub struct PyRefMut<'a, T> {
inner: RefMut<'a, T>,
py_shared_state: &'a PySharedState,
}
impl<'a, T> PyRefMut<'a, T> {
// Must be constructed by PySharedState after checking its leak_count.
// Otherwise, drop() would incorrectly update the state.
fn new(
_py: Python<'a>,
inner: RefMut<'a, T>,
py_shared_state: &'a PySharedState,
) -> Self {
Self {
inner,
py_shared_state,
}
}
}
impl<'a, T> std::ops::Deref for PyRefMut<'a, T> {
type Target = RefMut<'a, T>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<'a, T> std::ops::DerefMut for PyRefMut<'a, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
impl<'a, T> Drop for PyRefMut<'a, T> {
fn drop(&mut self) {
let gil = Python::acquire_gil();
let py = gil.python();
unsafe {
self.py_shared_state.decrease_leak_count(py, true);
}
}
}
/// Allows a `py_class!` generated struct to share references to one of its
/// data members with Python.
///
/// # Warning
///
/// The targeted `py_class!` needs to have the
/// `data py_shared_state: PySharedState;` data attribute to compile.
/// A better, more complicated macro is needed to automatically insert it,
/// but this one is not yet really battle tested (what happens when
/// multiple references are needed?). See the example below.
///
/// TODO allow Python container types: for now, integration with the garbage
/// collector does not extend to Rust structs holding references to Python
/// objects. Should the need surface, `__traverse__` and `__clear__` will
/// need to be written as per the `rust-cpython` docs on GC integration.
///
/// # Parameters
///
/// * `$name` is the same identifier used in for `py_class!` macro call.
/// * `$inner_struct` is the identifier of the underlying Rust struct
/// * `$data_member` is the identifier of the data member of `$inner_struct`
/// that will be shared.
/// * `$leaked` is the identifier to give to the struct that will manage
/// references to `$name`, to be used for example in other macros like
/// `py_shared_mapping_iterator`.
///
/// # Example
///
/// ```
/// struct MyStruct {
/// inner: Vec<u32>;
/// }
///
/// py_class!(pub class MyType |py| {
/// data inner: PySharedRefCell<MyStruct>;
/// data py_shared_state: PySharedState;
/// });
///
/// py_shared_ref!(MyType, MyStruct, inner, MyTypeLeakedRef);
/// ```
macro_rules! py_shared_ref {
(
$name: ident,
$inner_struct: ident,
$data_member: ident,
$leaked: ident,
) => {
impl $name {
fn borrow_mut<'a>(
&'a self,
py: Python<'a>,
) -> PyResult<crate::ref_sharing::PyRefMut<'a, $inner_struct>>
{
// assert $data_member type
use crate::ref_sharing::PySharedRefCell;
let data: &PySharedRefCell<_> = self.$data_member(py);
self.py_shared_state(py)
.borrow_mut(py, unsafe { data.borrow_mut() })
}
/// Returns a leaked reference and its management object.
///
/// # Safety
///
/// It's up to you to make sure that the management object lives
/// longer than the leaked reference. Otherwise, you'll get a
/// dangling reference.
unsafe fn leak_immutable<'a>(
&'a self,
py: Python<'a>,
) -> PyResult<($leaked, &'static $inner_struct)> {
// assert $data_member type
use crate::ref_sharing::PySharedRefCell;
let data: &PySharedRefCell<_> = self.$data_member(py);
let static_ref =
self.py_shared_state(py).leak_immutable(py, data)?;
let leak_handle = $leaked::new(py, self);
Ok((leak_handle, static_ref))
}
}
/// Manage immutable references to `$name` leaked into Python
/// iterators.
///
/// In truth, this does not represent leaked references themselves;
/// it is instead useful alongside them to manage them.
pub struct $leaked {
inner: $name,
}
impl $leaked {
// Marked as unsafe so client code wouldn't construct $leaked
// struct by mistake. Its drop() is unsafe.
unsafe fn new(py: Python, inner: &$name) -> Self {
Self {
inner: inner.clone_ref(py),
}
}
}
impl Drop for $leaked {
fn drop(&mut self) {
let gil = Python::acquire_gil();
let py = gil.python();
let state = self.inner.py_shared_state(py);
unsafe {
state.decrease_leak_count(py, false);
}
}
}
};
}
/// Defines a `py_class!` that acts as a Python iterator over a Rust iterator.
macro_rules! py_shared_iterator_impl {
(
$name: ident,
$leaked: ident,
$iterator_type: ty,
$success_func: expr,
$success_type: ty
) => {
py_class!(pub class $name |py| {
data inner: RefCell<Option<$leaked>>;
data it: RefCell<$iterator_type>;
def __next__(&self) -> PyResult<$success_type> {
let mut inner_opt = self.inner(py).borrow_mut();
if inner_opt.is_some() {
match self.it(py).borrow_mut().next() {
None => {
// replace Some(inner) by None, drop $leaked
inner_opt.take();
Ok(None)
}
Some(res) => {
$success_func(py, res)
}
}
} else {
Ok(None)
}
}
def __iter__(&self) -> PyResult<Self> {
Ok(self.clone_ref(py))
}
});
impl $name {
pub fn from_inner(
py: Python,
leaked: Option<$leaked>,
it: $iterator_type
) -> PyResult<Self> {
Self::create_instance(
py,
RefCell::new(leaked),
RefCell::new(it)
)
}
}
};
}
/// Defines a `py_class!` that acts as a Python mapping iterator over a Rust
/// iterator.
///
/// TODO: this is a bit awkward to use, and a better (more complicated)
/// procedural macro would simplify the interface a lot.
///
/// # Parameters
///
/// * `$name` is the identifier to give to the resulting Rust struct.
/// * `$leaked` corresponds to `$leaked` in the matching `py_shared_ref!` call.
/// * `$key_type` is the type of the key in the mapping
/// * `$value_type` is the type of the value in the mapping
/// * `$success_func` is a function for processing the Rust `(key, value)`
/// tuple on iteration success, turning it into something Python understands.
/// * `$success_func` is the return type of `$success_func`
///
/// # Example
///
/// ```
/// struct MyStruct {
/// inner: HashMap<Vec<u8>, Vec<u8>>;
/// }
///
/// py_class!(pub class MyType |py| {
/// data inner: PySharedRefCell<MyStruct>;
/// data py_shared_state: PySharedState;
///
/// def __iter__(&self) -> PyResult<MyTypeItemsIterator> {
/// let (leak_handle, leaked_ref) = unsafe { self.leak_immutable(py)? };
/// MyTypeItemsIterator::create_instance(
/// py,
/// RefCell::new(Some(leak_handle)),
/// RefCell::new(leaked_ref.iter()),
/// )
/// }
/// });
///
/// impl MyType {
/// fn translate_key_value(
/// py: Python,
/// res: (&Vec<u8>, &Vec<u8>),
/// ) -> PyResult<Option<(PyBytes, PyBytes)>> {
/// let (f, entry) = res;
/// Ok(Some((
/// PyBytes::new(py, f),
/// PyBytes::new(py, entry),
/// )))
/// }
/// }
///
/// py_shared_ref!(MyType, MyStruct, inner, MyTypeLeakedRef);
///
/// py_shared_mapping_iterator!(
/// MyTypeItemsIterator,
/// MyTypeLeakedRef,
/// Vec<u8>,
/// Vec<u8>,
/// MyType::translate_key_value,
/// Option<(PyBytes, PyBytes)>
/// );
/// ```
#[allow(unused)] // Removed in a future patch
macro_rules! py_shared_mapping_iterator {
(
$name:ident,
$leaked:ident,
$key_type: ty,
$value_type: ty,
$success_func: path,
$success_type: ty
) => {
py_shared_iterator_impl!(
$name,
$leaked,
Box<
dyn Iterator<Item = (&'static $key_type, &'static $value_type)>
+ Send,
>,
$success_func,
$success_type
);
};
}
/// Works basically the same as `py_shared_mapping_iterator`, but with only a
/// key.
macro_rules! py_shared_sequence_iterator {
(
$name:ident,
$leaked:ident,
$key_type: ty,
$success_func: path,
$success_type: ty
) => {
py_shared_iterator_impl!(
$name,
$leaked,
Box<dyn Iterator<Item = &'static $key_type> + Send>,
$success_func,
$success_type
);
};
}