##// END OF EJS Templates
vfs: add a 'reljoin' function for joining relative paths...
vfs: add a 'reljoin' function for joining relative paths The vfs.join method only works for absolute paths. We need something that works for relative paths too when transforming filenames. Since os.path.join may misbehave in tricky encoding situations, encapsulate the new join method in our vfs abstraction. The default implementation remains os.path.join, but this opens the door to other VFSes doing something more intelligent based on their needs. In the same go, we replace the usage of 'os.path.join' in transaction code.

File last commit:

r22199:b3e51675 default
r23581:aed981c7 default
Show More
worker.py
158 lines | 4.4 KiB | text/x-python | PythonLexer
# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from i18n import _
import errno, os, signal, sys, threading
import util
def countcpus():
'''try to count the number of CPUs on the system'''
# posix
try:
n = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if n > 0:
return n
except (AttributeError, ValueError):
pass
# windows
try:
n = int(os.environ['NUMBER_OF_PROCESSORS'])
if n > 0:
return n
except (KeyError, ValueError):
pass
return 1
def _numworkers(ui):
s = ui.config('worker', 'numcpus')
if s:
try:
n = int(s)
if n >= 1:
return n
except ValueError:
raise util.Abort(_('number of cpus must be an integer'))
return min(max(countcpus(), 4), 32)
if os.name == 'posix':
_startupcost = 0.01
else:
_startupcost = 1e30
def worthwhile(ui, costperop, nops):
'''try to determine whether the benefit of multiple processes can
outweigh the cost of starting them'''
linear = costperop * nops
workers = _numworkers(ui)
benefit = linear - (_startupcost * workers + linear / workers)
return benefit >= 0.15
def worker(ui, costperarg, func, staticargs, args):
'''run a function, possibly in parallel in multiple worker
processes.
returns a progress iterator
costperarg - cost of a single task
func - function to run
staticargs - arguments to pass to every invocation of the function
args - arguments to split into chunks, to pass to individual
workers
'''
if worthwhile(ui, costperarg, len(args)):
return _platformworker(ui, func, staticargs, args)
return func(*staticargs + (args,))
def _posixworker(ui, func, staticargs, args):
rfd, wfd = os.pipe()
workers = _numworkers(ui)
oldhandler = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, signal.SIG_IGN)
pids, problem = [], [0]
for pargs in partition(args, workers):
pid = os.fork()
if pid == 0:
signal.signal(signal.SIGINT, oldhandler)
try:
os.close(rfd)
for i, item in func(*(staticargs + (pargs,))):
os.write(wfd, '%d %s\n' % (i, item))
os._exit(0)
except KeyboardInterrupt:
os._exit(255)
# other exceptions are allowed to propagate, we rely
# on lock.py's pid checks to avoid release callbacks
pids.append(pid)
pids.reverse()
os.close(wfd)
fp = os.fdopen(rfd, 'rb', 0)
def killworkers():
# if one worker bails, there's no good reason to wait for the rest
for p in pids:
try:
os.kill(p, signal.SIGTERM)
except OSError, err:
if err.errno != errno.ESRCH:
raise
def waitforworkers():
for _pid in pids:
st = _exitstatus(os.wait()[1])
if st and not problem[0]:
problem[0] = st
killworkers()
t = threading.Thread(target=waitforworkers)
t.start()
def cleanup():
signal.signal(signal.SIGINT, oldhandler)
t.join()
status = problem[0]
if status:
if status < 0:
os.kill(os.getpid(), -status)
sys.exit(status)
try:
for line in fp:
l = line.split(' ', 1)
yield int(l[0]), l[1][:-1]
except: # re-raises
killworkers()
cleanup()
raise
cleanup()
def _posixexitstatus(code):
'''convert a posix exit status into the same form returned by
os.spawnv
returns None if the process was stopped instead of exiting'''
if os.WIFEXITED(code):
return os.WEXITSTATUS(code)
elif os.WIFSIGNALED(code):
return -os.WTERMSIG(code)
if os.name != 'nt':
_platformworker = _posixworker
_exitstatus = _posixexitstatus
def partition(lst, nslices):
'''partition a list into N slices of equal size'''
n = len(lst)
chunk, slop = n / nslices, n % nslices
end = 0
for i in xrange(nslices):
start = end
end = start + chunk
if slop:
end += 1
slop -= 1
yield lst[start:end]