##// END OF EJS Templates
phabricator: switch to the creatediff endpoint...
phabricator: switch to the creatediff endpoint This lets the extension submit binary files, as well as set branch info so that it is exposed in the Phabricator interface. Differential Revision: https://phab.mercurial-scm.org/D7053

File last commit:

r43484:0246bbe1 default
r43556:af067d29 default
Show More
cindex.rs
102 lines | 3.3 KiB | application/rls-services+xml | RustLexer
// cindex.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Bindings to use the Index defined by the parsers C extension
//!
//! Ideally, we should use an Index entirely implemented in Rust,
//! but this will take some time to get there.
use cpython::{PyClone, PyObject, PyResult, Python};
use hg::{Graph, GraphError, Revision, WORKING_DIRECTORY_REVISION};
use libc::c_int;
py_capsule_fn!(
from mercurial.cext.parsers import index_get_parents_CAPI
as get_parents_capi
signature (
index: *mut RawPyObject,
rev: c_int,
ps: *mut [c_int; 2],
) -> c_int
);
/// A `Graph` backed up by objects and functions from revlog.c
///
/// This implementation of the `Graph` trait, relies on (pointers to)
/// - the C index object (`index` member)
/// - the `index_get_parents()` function (`parents` member)
///
/// # Safety
///
/// The C index itself is mutable, and this Rust exposition is **not
/// protected by the GIL**, meaning that this construct isn't safe with respect
/// to Python threads.
///
/// All callers of this `Index` must acquire the GIL and must not release it
/// while working.
///
/// # TODO find a solution to make it GIL safe again.
///
/// This is non trivial, and can wait until we have a clearer picture with
/// more Rust Mercurial constructs.
///
/// One possibility would be to a `GILProtectedIndex` wrapper enclosing
/// a `Python<'p>` marker and have it be the one implementing the
/// `Graph` trait, but this would mean the `Graph` implementor would become
/// likely to change between subsequent method invocations of the `hg-core`
/// objects (a serious change of the `hg-core` API):
/// either exposing ways to mutate the `Graph`, or making it a non persistent
/// parameter in the relevant methods that need one.
///
/// Another possibility would be to introduce an abstract lock handle into
/// the core API, that would be tied to `GILGuard` / `Python<'p>`
/// in the case of the `cpython` crate bindings yet could leave room for other
/// mechanisms in other contexts.
pub struct Index {
index: PyObject,
parents: get_parents_capi::CapsuleFn,
}
impl Index {
pub fn new(py: Python, index: PyObject) -> PyResult<Self> {
Ok(Index {
index: index,
parents: get_parents_capi::retrieve(py)?,
})
}
}
impl Clone for Index {
fn clone(&self) -> Self {
let guard = Python::acquire_gil();
Index {
index: self.index.clone_ref(guard.python()),
parents: self.parents.clone(),
}
}
}
impl Graph for Index {
/// wrap a call to the C extern parents function
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
if rev == WORKING_DIRECTORY_REVISION {
return Err(GraphError::WorkingDirectoryUnsupported);
}
let mut res: [c_int; 2] = [0; 2];
let code = unsafe {
(self.parents)(
self.index.as_ptr(),
rev as c_int,
&mut res as *mut [c_int; 2],
)
};
match code {
0 => Ok(res),
_ => Err(GraphError::ParentOutOfRange(rev)),
}
}
}