##// END OF EJS Templates
track-tags: introduce first bits of tags tracking during transaction...
track-tags: introduce first bits of tags tracking during transaction This changeset introduces detection of tags changes during transaction. When this happens a 'tag_moved=1' argument is set for hooks, similar to what we do for bookmarks and phases. This code is disabled by default as there are still various performance concerns. Some require a smarter use of our existing tag caches and some other require rework around the transaction logic to skip execution when unneeded. These performance improvements have been delayed, I would like to be able to experiment and stabilize the feature behavior first. Later changesets will push the concept further and provide a way for hooks to know what are the actual changes introduced by the transaction. Similar work is needed for the other families of changes (bookmark, phase, obsolescence, etc). Upgrade of the transaction logic will likely be performed at the same time. The current code can report some false positive when .hgtags file changes but resulting tags are unchanged. This will be fixed in the next changeset. For testing, we simply globally enable a hook in the tag test as all the possible tag update cases should exist there. A couple of them show the false positive mentioned above. See in code documentation for more details.

File last commit:

r29216:ead25aa2 default
r31994:b36318e6 default
Show More
peer.py
155 lines | 4.7 KiB | text/x-python | PythonLexer
# peer.py - repository base classes for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
# Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
from .i18n import _
from . import (
error,
util,
)
# abstract batching support
class future(object):
'''placeholder for a value to be set later'''
def set(self, value):
if util.safehasattr(self, 'value'):
raise error.RepoError("future is already set")
self.value = value
class batcher(object):
'''base class for batches of commands submittable in a single request
All methods invoked on instances of this class are simply queued and
return a a future for the result. Once you call submit(), all the queued
calls are performed and the results set in their respective futures.
'''
def __init__(self):
self.calls = []
def __getattr__(self, name):
def call(*args, **opts):
resref = future()
self.calls.append((name, args, opts, resref,))
return resref
return call
def submit(self):
raise NotImplementedError()
class iterbatcher(batcher):
def submit(self):
raise NotImplementedError()
def results(self):
raise NotImplementedError()
class localbatch(batcher):
'''performs the queued calls directly'''
def __init__(self, local):
batcher.__init__(self)
self.local = local
def submit(self):
for name, args, opts, resref in self.calls:
resref.set(getattr(self.local, name)(*args, **opts))
class localiterbatcher(iterbatcher):
def __init__(self, local):
super(iterbatcher, self).__init__()
self.local = local
def submit(self):
# submit for a local iter batcher is a noop
pass
def results(self):
for name, args, opts, resref in self.calls:
yield getattr(self.local, name)(*args, **opts)
def batchable(f):
'''annotation for batchable methods
Such methods must implement a coroutine as follows:
@batchable
def sample(self, one, two=None):
# Handle locally computable results first:
if not one:
yield "a local result", None
# Build list of encoded arguments suitable for your wire protocol:
encargs = [('one', encode(one),), ('two', encode(two),)]
# Create future for injection of encoded result:
encresref = future()
# Return encoded arguments and future:
yield encargs, encresref
# Assuming the future to be filled with the result from the batched
# request now. Decode it:
yield decode(encresref.value)
The decorator returns a function which wraps this coroutine as a plain
method, but adds the original method as an attribute called "batchable",
which is used by remotebatch to split the call into separate encoding and
decoding phases.
'''
def plain(*args, **opts):
batchable = f(*args, **opts)
encargsorres, encresref = next(batchable)
if not encresref:
return encargsorres # a local result in this case
self = args[0]
encresref.set(self._submitone(f.func_name, encargsorres))
return next(batchable)
setattr(plain, 'batchable', f)
return plain
class peerrepository(object):
def batch(self):
return localbatch(self)
def iterbatch(self):
"""Batch requests but allow iterating over the results.
This is to allow interleaving responses with things like
progress updates for clients.
"""
return localiterbatcher(self)
def capable(self, name):
'''tell whether repo supports named capability.
return False if not supported.
if boolean capability, return True.
if string capability, return string.'''
caps = self._capabilities()
if name in caps:
return True
name_eq = name + '='
for cap in caps:
if cap.startswith(name_eq):
return cap[len(name_eq):]
return False
def requirecap(self, name, purpose):
'''raise an exception if the given capability is not present'''
if not self.capable(name):
raise error.CapabilityError(
_('cannot %s; remote repository does not '
'support the %r capability') % (purpose, name))
def local(self):
'''return peer as a localrepo, or None'''
return None
def peer(self):
return self
def canpush(self):
return True
def close(self):
pass