|
|
"""
|
|
|
revlog.py - storage back-end for mercurial
|
|
|
|
|
|
This provides efficient delta storage with O(1) retrieve and append
|
|
|
and O(changes) merge between branches
|
|
|
|
|
|
Copyright 2005 Matt Mackall <mpm@selenic.com>
|
|
|
|
|
|
This software may be used and distributed according to the terms
|
|
|
of the GNU General Public License, incorporated herein by reference.
|
|
|
"""
|
|
|
|
|
|
from node import *
|
|
|
from i18n import gettext as _
|
|
|
from demandload import demandload
|
|
|
demandload(globals(), "binascii errno heapq mdiff sha struct zlib")
|
|
|
|
|
|
def hash(text, p1, p2):
|
|
|
"""generate a hash from the given text and its parent hashes
|
|
|
|
|
|
This hash combines both the current file contents and its history
|
|
|
in a manner that makes it easy to distinguish nodes with the same
|
|
|
content in the revision graph.
|
|
|
"""
|
|
|
l = [p1, p2]
|
|
|
l.sort()
|
|
|
s = sha.new(l[0])
|
|
|
s.update(l[1])
|
|
|
s.update(text)
|
|
|
return s.digest()
|
|
|
|
|
|
def compress(text):
|
|
|
""" generate a possibly-compressed representation of text """
|
|
|
if not text: return ("", text)
|
|
|
if len(text) < 44:
|
|
|
if text[0] == '\0': return ("", text)
|
|
|
return ('u', text)
|
|
|
bin = zlib.compress(text)
|
|
|
if len(bin) > len(text):
|
|
|
if text[0] == '\0': return ("", text)
|
|
|
return ('u', text)
|
|
|
return ("", bin)
|
|
|
|
|
|
def decompress(bin):
|
|
|
""" decompress the given input """
|
|
|
if not bin: return bin
|
|
|
t = bin[0]
|
|
|
if t == '\0': return bin
|
|
|
if t == 'x': return zlib.decompress(bin)
|
|
|
if t == 'u': return bin[1:]
|
|
|
raise RevlogError(_("unknown compression type %s") % t)
|
|
|
|
|
|
indexformat = ">4l20s20s20s"
|
|
|
|
|
|
class lazyparser(object):
|
|
|
"""
|
|
|
this class avoids the need to parse the entirety of large indices
|
|
|
|
|
|
By default we parse and load 1000 entries at a time.
|
|
|
|
|
|
If no position is specified, we load the whole index, and replace
|
|
|
the lazy objects in revlog with the underlying objects for
|
|
|
efficiency in cases where we look at most of the nodes.
|
|
|
"""
|
|
|
def __init__(self, data, revlog):
|
|
|
self.data = data
|
|
|
self.s = struct.calcsize(indexformat)
|
|
|
self.l = len(data)/self.s
|
|
|
self.index = [None] * self.l
|
|
|
self.map = {nullid: -1}
|
|
|
self.all = 0
|
|
|
self.revlog = revlog
|
|
|
|
|
|
def trunc(self, pos):
|
|
|
self.l = pos/self.s
|
|
|
|
|
|
def load(self, pos=None):
|
|
|
if self.all: return
|
|
|
if pos is not None:
|
|
|
block = pos / 1000
|
|
|
i = block * 1000
|
|
|
end = min(self.l, i + 1000)
|
|
|
else:
|
|
|
self.all = 1
|
|
|
i = 0
|
|
|
end = self.l
|
|
|
self.revlog.index = self.index
|
|
|
self.revlog.nodemap = self.map
|
|
|
|
|
|
while i < end:
|
|
|
d = self.data[i * self.s: (i + 1) * self.s]
|
|
|
e = struct.unpack(indexformat, d)
|
|
|
self.index[i] = e
|
|
|
self.map[e[6]] = i
|
|
|
i += 1
|
|
|
|
|
|
class lazyindex(object):
|
|
|
"""a lazy version of the index array"""
|
|
|
def __init__(self, parser):
|
|
|
self.p = parser
|
|
|
def __len__(self):
|
|
|
return len(self.p.index)
|
|
|
def load(self, pos):
|
|
|
if pos < 0:
|
|
|
pos += len(self.p.index)
|
|
|
self.p.load(pos)
|
|
|
return self.p.index[pos]
|
|
|
def __getitem__(self, pos):
|
|
|
return self.p.index[pos] or self.load(pos)
|
|
|
def __delitem__(self, pos):
|
|
|
del self.p.index[pos]
|
|
|
def append(self, e):
|
|
|
self.p.index.append(e)
|
|
|
def trunc(self, pos):
|
|
|
self.p.trunc(pos)
|
|
|
|
|
|
class lazymap(object):
|
|
|
"""a lazy version of the node map"""
|
|
|
def __init__(self, parser):
|
|
|
self.p = parser
|
|
|
def load(self, key):
|
|
|
if self.p.all: return
|
|
|
n = self.p.data.find(key)
|
|
|
if n < 0:
|
|
|
raise KeyError(key)
|
|
|
pos = n / self.p.s
|
|
|
self.p.load(pos)
|
|
|
def __contains__(self, key):
|
|
|
self.p.load()
|
|
|
return key in self.p.map
|
|
|
def __iter__(self):
|
|
|
yield nullid
|
|
|
for i in xrange(self.p.l):
|
|
|
try:
|
|
|
yield self.p.index[i][6]
|
|
|
except:
|
|
|
self.p.load(i)
|
|
|
yield self.p.index[i][6]
|
|
|
def __getitem__(self, key):
|
|
|
try:
|
|
|
return self.p.map[key]
|
|
|
except KeyError:
|
|
|
try:
|
|
|
self.load(key)
|
|
|
return self.p.map[key]
|
|
|
except KeyError:
|
|
|
raise KeyError("node " + hex(key))
|
|
|
def __setitem__(self, key, val):
|
|
|
self.p.map[key] = val
|
|
|
def __delitem__(self, key):
|
|
|
del self.p.map[key]
|
|
|
|
|
|
class RevlogError(Exception): pass
|
|
|
|
|
|
class revlog(object):
|
|
|
"""
|
|
|
the underlying revision storage object
|
|
|
|
|
|
A revlog consists of two parts, an index and the revision data.
|
|
|
|
|
|
The index is a file with a fixed record size containing
|
|
|
information on each revision, includings its nodeid (hash), the
|
|
|
nodeids of its parents, the position and offset of its data within
|
|
|
the data file, and the revision it's based on. Finally, each entry
|
|
|
contains a linkrev entry that can serve as a pointer to external
|
|
|
data.
|
|
|
|
|
|
The revision data itself is a linear collection of data chunks.
|
|
|
Each chunk represents a revision and is usually represented as a
|
|
|
delta against the previous chunk. To bound lookup time, runs of
|
|
|
deltas are limited to about 2 times the length of the original
|
|
|
version data. This makes retrieval of a version proportional to
|
|
|
its size, or O(1) relative to the number of revisions.
|
|
|
|
|
|
Both pieces of the revlog are written to in an append-only
|
|
|
fashion, which means we never need to rewrite a file to insert or
|
|
|
remove data, and can use some simple techniques to avoid the need
|
|
|
for locking while reading.
|
|
|
"""
|
|
|
def __init__(self, opener, indexfile, datafile):
|
|
|
"""
|
|
|
create a revlog object
|
|
|
|
|
|
opener is a function that abstracts the file opening operation
|
|
|
and can be used to implement COW semantics or the like.
|
|
|
"""
|
|
|
self.indexfile = indexfile
|
|
|
self.datafile = datafile
|
|
|
self.opener = opener
|
|
|
self.cache = None
|
|
|
|
|
|
try:
|
|
|
i = self.opener(self.indexfile).read()
|
|
|
except IOError, inst:
|
|
|
if inst.errno != errno.ENOENT:
|
|
|
raise
|
|
|
i = ""
|
|
|
|
|
|
if len(i) > 10000:
|
|
|
# big index, let's parse it on demand
|
|
|
parser = lazyparser(i, self)
|
|
|
self.index = lazyindex(parser)
|
|
|
self.nodemap = lazymap(parser)
|
|
|
else:
|
|
|
s = struct.calcsize(indexformat)
|
|
|
l = len(i) / s
|
|
|
self.index = [None] * l
|
|
|
m = [None] * l
|
|
|
|
|
|
n = 0
|
|
|
for f in xrange(0, len(i), s):
|
|
|
# offset, size, base, linkrev, p1, p2, nodeid
|
|
|
e = struct.unpack(indexformat, i[f:f + s])
|
|
|
m[n] = (e[6], n)
|
|
|
self.index[n] = e
|
|
|
n += 1
|
|
|
|
|
|
self.nodemap = dict(m)
|
|
|
self.nodemap[nullid] = -1
|
|
|
|
|
|
def tip(self): return self.node(len(self.index) - 1)
|
|
|
def count(self): return len(self.index)
|
|
|
def node(self, rev): return (rev < 0) and nullid or self.index[rev][6]
|
|
|
def rev(self, node):
|
|
|
try:
|
|
|
return self.nodemap[node]
|
|
|
except KeyError:
|
|
|
raise RevlogError(_('%s: no node %s') % (self.indexfile, hex(node)))
|
|
|
def linkrev(self, node): return self.index[self.rev(node)][3]
|
|
|
def parents(self, node):
|
|
|
if node == nullid: return (nullid, nullid)
|
|
|
return self.index[self.rev(node)][4:6]
|
|
|
|
|
|
def start(self, rev): return self.index[rev][0]
|
|
|
def length(self, rev): return self.index[rev][1]
|
|
|
def end(self, rev): return self.start(rev) + self.length(rev)
|
|
|
def base(self, rev): return self.index[rev][2]
|
|
|
|
|
|
def reachable(self, rev, stop=None):
|
|
|
reachable = {}
|
|
|
visit = [rev]
|
|
|
reachable[rev] = 1
|
|
|
if stop:
|
|
|
stopn = self.rev(stop)
|
|
|
else:
|
|
|
stopn = 0
|
|
|
while visit:
|
|
|
n = visit.pop(0)
|
|
|
if n == stop:
|
|
|
continue
|
|
|
if n == nullid:
|
|
|
continue
|
|
|
for p in self.parents(n):
|
|
|
if self.rev(p) < stopn:
|
|
|
continue
|
|
|
if p not in reachable:
|
|
|
reachable[p] = 1
|
|
|
visit.append(p)
|
|
|
return reachable
|
|
|
|
|
|
def nodesbetween(self, roots=None, heads=None):
|
|
|
"""Return a tuple containing three elements. Elements 1 and 2 contain
|
|
|
a final list bases and heads after all the unreachable ones have been
|
|
|
pruned. Element 0 contains a topologically sorted list of all
|
|
|
|
|
|
nodes that satisfy these constraints:
|
|
|
1. All nodes must be descended from a node in roots (the nodes on
|
|
|
roots are considered descended from themselves).
|
|
|
2. All nodes must also be ancestors of a node in heads (the nodes in
|
|
|
heads are considered to be their own ancestors).
|
|
|
|
|
|
If roots is unspecified, nullid is assumed as the only root.
|
|
|
If heads is unspecified, it is taken to be the output of the
|
|
|
heads method (i.e. a list of all nodes in the repository that
|
|
|
have no children)."""
|
|
|
nonodes = ([], [], [])
|
|
|
if roots is not None:
|
|
|
roots = list(roots)
|
|
|
if not roots:
|
|
|
return nonodes
|
|
|
lowestrev = min([self.rev(n) for n in roots])
|
|
|
else:
|
|
|
roots = [nullid] # Everybody's a descendent of nullid
|
|
|
lowestrev = -1
|
|
|
if (lowestrev == -1) and (heads is None):
|
|
|
# We want _all_ the nodes!
|
|
|
return ([self.node(r) for r in xrange(0, self.count())],
|
|
|
[nullid], list(self.heads()))
|
|
|
if heads is None:
|
|
|
# All nodes are ancestors, so the latest ancestor is the last
|
|
|
# node.
|
|
|
highestrev = self.count() - 1
|
|
|
# Set ancestors to None to signal that every node is an ancestor.
|
|
|
ancestors = None
|
|
|
# Set heads to an empty dictionary for later discovery of heads
|
|
|
heads = {}
|
|
|
else:
|
|
|
heads = list(heads)
|
|
|
if not heads:
|
|
|
return nonodes
|
|
|
ancestors = {}
|
|
|
# Start at the top and keep marking parents until we're done.
|
|
|
nodestotag = heads[:]
|
|
|
# Turn heads into a dictionary so we can remove 'fake' heads.
|
|
|
# Also, later we will be using it to filter out the heads we can't
|
|
|
# find from roots.
|
|
|
heads = dict.fromkeys(heads, 0)
|
|
|
# Remember where the top was so we can use it as a limit later.
|
|
|
highestrev = max([self.rev(n) for n in nodestotag])
|
|
|
while nodestotag:
|
|
|
# grab a node to tag
|
|
|
n = nodestotag.pop()
|
|
|
# Never tag nullid
|
|
|
if n == nullid:
|
|
|
continue
|
|
|
# A node's revision number represents its place in a
|
|
|
# topologically sorted list of nodes.
|
|
|
r = self.rev(n)
|
|
|
if r >= lowestrev:
|
|
|
if n not in ancestors:
|
|
|
# If we are possibly a descendent of one of the roots
|
|
|
# and we haven't already been marked as an ancestor
|
|
|
ancestors[n] = 1 # Mark as ancestor
|
|
|
# Add non-nullid parents to list of nodes to tag.
|
|
|
nodestotag.extend([p for p in self.parents(n) if
|
|
|
p != nullid])
|
|
|
elif n in heads: # We've seen it before, is it a fake head?
|
|
|
# So it is, real heads should not be the ancestors of
|
|
|
# any other heads.
|
|
|
heads.pop(n)
|
|
|
if not ancestors:
|
|
|
return nonodes
|
|
|
# Now that we have our set of ancestors, we want to remove any
|
|
|
# roots that are not ancestors.
|
|
|
|
|
|
# If one of the roots was nullid, everything is included anyway.
|
|
|
if lowestrev > -1:
|
|
|
# But, since we weren't, let's recompute the lowest rev to not
|
|
|
# include roots that aren't ancestors.
|
|
|
|
|
|
# Filter out roots that aren't ancestors of heads
|
|
|
roots = [n for n in roots if n in ancestors]
|
|
|
# Recompute the lowest revision
|
|
|
if roots:
|
|
|
lowestrev = min([self.rev(n) for n in roots])
|
|
|
else:
|
|
|
# No more roots? Return empty list
|
|
|
return nonodes
|
|
|
else:
|
|
|
# We are descending from nullid, and don't need to care about
|
|
|
# any other roots.
|
|
|
lowestrev = -1
|
|
|
roots = [nullid]
|
|
|
# Transform our roots list into a 'set' (i.e. a dictionary where the
|
|
|
# values don't matter.
|
|
|
descendents = dict.fromkeys(roots, 1)
|
|
|
# Also, keep the original roots so we can filter out roots that aren't
|
|
|
# 'real' roots (i.e. are descended from other roots).
|
|
|
roots = descendents.copy()
|
|
|
# Our topologically sorted list of output nodes.
|
|
|
orderedout = []
|
|
|
# Don't start at nullid since we don't want nullid in our output list,
|
|
|
# and if nullid shows up in descedents, empty parents will look like
|
|
|
# they're descendents.
|
|
|
for r in xrange(max(lowestrev, 0), highestrev + 1):
|
|
|
n = self.node(r)
|
|
|
isdescendent = False
|
|
|
if lowestrev == -1: # Everybody is a descendent of nullid
|
|
|
isdescendent = True
|
|
|
elif n in descendents:
|
|
|
# n is already a descendent
|
|
|
isdescendent = True
|
|
|
# This check only needs to be done here because all the roots
|
|
|
# will start being marked is descendents before the loop.
|
|
|
if n in roots:
|
|
|
# If n was a root, check if it's a 'real' root.
|
|
|
p = tuple(self.parents(n))
|
|
|
# If any of its parents are descendents, it's not a root.
|
|
|
if (p[0] in descendents) or (p[1] in descendents):
|
|
|
roots.pop(n)
|
|
|
else:
|
|
|
p = tuple(self.parents(n))
|
|
|
# A node is a descendent if either of its parents are
|
|
|
# descendents. (We seeded the dependents list with the roots
|
|
|
# up there, remember?)
|
|
|
if (p[0] in descendents) or (p[1] in descendents):
|
|
|
descendents[n] = 1
|
|
|
isdescendent = True
|
|
|
if isdescendent and ((ancestors is None) or (n in ancestors)):
|
|
|
# Only include nodes that are both descendents and ancestors.
|
|
|
orderedout.append(n)
|
|
|
if (ancestors is not None) and (n in heads):
|
|
|
# We're trying to figure out which heads are reachable
|
|
|
# from roots.
|
|
|
# Mark this head as having been reached
|
|
|
heads[n] = 1
|
|
|
elif ancestors is None:
|
|
|
# Otherwise, we're trying to discover the heads.
|
|
|
# Assume this is a head because if it isn't, the next step
|
|
|
# will eventually remove it.
|
|
|
heads[n] = 1
|
|
|
# But, obviously its parents aren't.
|
|
|
for p in self.parents(n):
|
|
|
heads.pop(p, None)
|
|
|
heads = [n for n in heads.iterkeys() if heads[n] != 0]
|
|
|
roots = roots.keys()
|
|
|
assert orderedout
|
|
|
assert roots
|
|
|
assert heads
|
|
|
return (orderedout, roots, heads)
|
|
|
|
|
|
def heads(self, start=None):
|
|
|
"""return the list of all nodes that have no children
|
|
|
|
|
|
if start is specified, only heads that are descendants of
|
|
|
start will be returned
|
|
|
|
|
|
"""
|
|
|
if start is None:
|
|
|
start = nullid
|
|
|
reachable = {start: 1}
|
|
|
heads = {start: 1}
|
|
|
startrev = self.rev(start)
|
|
|
|
|
|
for r in xrange(startrev + 1, self.count()):
|
|
|
n = self.node(r)
|
|
|
for pn in self.parents(n):
|
|
|
if pn in reachable:
|
|
|
reachable[n] = 1
|
|
|
heads[n] = 1
|
|
|
if pn in heads:
|
|
|
del heads[pn]
|
|
|
return heads.keys()
|
|
|
|
|
|
def children(self, node):
|
|
|
"""find the children of a given node"""
|
|
|
c = []
|
|
|
p = self.rev(node)
|
|
|
for r in range(p + 1, self.count()):
|
|
|
n = self.node(r)
|
|
|
for pn in self.parents(n):
|
|
|
if pn == node:
|
|
|
c.append(n)
|
|
|
continue
|
|
|
elif pn == nullid:
|
|
|
continue
|
|
|
return c
|
|
|
|
|
|
def lookup(self, id):
|
|
|
"""locate a node based on revision number or subset of hex nodeid"""
|
|
|
try:
|
|
|
rev = int(id)
|
|
|
if str(rev) != id: raise ValueError
|
|
|
if rev < 0: rev = self.count() + rev
|
|
|
if rev < 0 or rev >= self.count(): raise ValueError
|
|
|
return self.node(rev)
|
|
|
except (ValueError, OverflowError):
|
|
|
c = []
|
|
|
for n in self.nodemap:
|
|
|
if hex(n).startswith(id):
|
|
|
c.append(n)
|
|
|
if len(c) > 1: raise RevlogError(_("Ambiguous identifier"))
|
|
|
if len(c) < 1: raise RevlogError(_("No match found"))
|
|
|
return c[0]
|
|
|
|
|
|
return None
|
|
|
|
|
|
def diff(self, a, b):
|
|
|
"""return a delta between two revisions"""
|
|
|
return mdiff.textdiff(a, b)
|
|
|
|
|
|
def patches(self, t, pl):
|
|
|
"""apply a list of patches to a string"""
|
|
|
return mdiff.patches(t, pl)
|
|
|
|
|
|
def delta(self, node):
|
|
|
"""return or calculate a delta between a node and its predecessor"""
|
|
|
r = self.rev(node)
|
|
|
b = self.base(r)
|
|
|
if r == b:
|
|
|
return self.diff(self.revision(self.node(r - 1)),
|
|
|
self.revision(node))
|
|
|
else:
|
|
|
f = self.opener(self.datafile)
|
|
|
f.seek(self.start(r))
|
|
|
data = f.read(self.length(r))
|
|
|
return decompress(data)
|
|
|
|
|
|
def revision(self, node):
|
|
|
"""return an uncompressed revision of a given"""
|
|
|
if node == nullid: return ""
|
|
|
if self.cache and self.cache[0] == node: return self.cache[2]
|
|
|
|
|
|
# look up what we need to read
|
|
|
text = None
|
|
|
rev = self.rev(node)
|
|
|
start, length, base, link, p1, p2, node = self.index[rev]
|
|
|
end = start + length
|
|
|
if base != rev: start = self.start(base)
|
|
|
|
|
|
# do we have useful data cached?
|
|
|
if self.cache and self.cache[1] >= base and self.cache[1] < rev:
|
|
|
base = self.cache[1]
|
|
|
start = self.start(base + 1)
|
|
|
text = self.cache[2]
|
|
|
last = 0
|
|
|
|
|
|
f = self.opener(self.datafile)
|
|
|
f.seek(start)
|
|
|
data = f.read(end - start)
|
|
|
|
|
|
if text is None:
|
|
|
last = self.length(base)
|
|
|
text = decompress(data[:last])
|
|
|
|
|
|
bins = []
|
|
|
for r in xrange(base + 1, rev + 1):
|
|
|
s = self.length(r)
|
|
|
bins.append(decompress(data[last:last + s]))
|
|
|
last = last + s
|
|
|
|
|
|
text = mdiff.patches(text, bins)
|
|
|
|
|
|
if node != hash(text, p1, p2):
|
|
|
raise RevlogError(_("integrity check failed on %s:%d")
|
|
|
% (self.datafile, rev))
|
|
|
|
|
|
self.cache = (node, rev, text)
|
|
|
return text
|
|
|
|
|
|
def addrevision(self, text, transaction, link, p1=None, p2=None, d=None):
|
|
|
"""add a revision to the log
|
|
|
|
|
|
text - the revision data to add
|
|
|
transaction - the transaction object used for rollback
|
|
|
link - the linkrev data to add
|
|
|
p1, p2 - the parent nodeids of the revision
|
|
|
d - an optional precomputed delta
|
|
|
"""
|
|
|
if text is None: text = ""
|
|
|
if p1 is None: p1 = self.tip()
|
|
|
if p2 is None: p2 = nullid
|
|
|
|
|
|
node = hash(text, p1, p2)
|
|
|
|
|
|
if node in self.nodemap:
|
|
|
return node
|
|
|
|
|
|
n = self.count()
|
|
|
t = n - 1
|
|
|
|
|
|
if n:
|
|
|
base = self.base(t)
|
|
|
start = self.start(base)
|
|
|
end = self.end(t)
|
|
|
if not d:
|
|
|
prev = self.revision(self.tip())
|
|
|
d = self.diff(prev, str(text))
|
|
|
data = compress(d)
|
|
|
l = len(data[1]) + len(data[0])
|
|
|
dist = end - start + l
|
|
|
|
|
|
# full versions are inserted when the needed deltas
|
|
|
# become comparable to the uncompressed text
|
|
|
if not n or dist > len(text) * 2:
|
|
|
data = compress(text)
|
|
|
l = len(data[1]) + len(data[0])
|
|
|
base = n
|
|
|
else:
|
|
|
base = self.base(t)
|
|
|
|
|
|
offset = 0
|
|
|
if t >= 0:
|
|
|
offset = self.end(t)
|
|
|
|
|
|
e = (offset, l, base, link, p1, p2, node)
|
|
|
|
|
|
self.index.append(e)
|
|
|
self.nodemap[node] = n
|
|
|
entry = struct.pack(indexformat, *e)
|
|
|
|
|
|
transaction.add(self.datafile, e[0])
|
|
|
f = self.opener(self.datafile, "a")
|
|
|
if data[0]:
|
|
|
f.write(data[0])
|
|
|
f.write(data[1])
|
|
|
transaction.add(self.indexfile, n * len(entry))
|
|
|
self.opener(self.indexfile, "a").write(entry)
|
|
|
|
|
|
self.cache = (node, n, text)
|
|
|
return node
|
|
|
|
|
|
def ancestor(self, a, b):
|
|
|
"""calculate the least common ancestor of nodes a and b"""
|
|
|
# calculate the distance of every node from root
|
|
|
dist = {nullid: 0}
|
|
|
for i in xrange(self.count()):
|
|
|
n = self.node(i)
|
|
|
p1, p2 = self.parents(n)
|
|
|
dist[n] = max(dist[p1], dist[p2]) + 1
|
|
|
|
|
|
# traverse ancestors in order of decreasing distance from root
|
|
|
def ancestors(node):
|
|
|
# we store negative distances because heap returns smallest member
|
|
|
h = [(-dist[node], node)]
|
|
|
seen = {}
|
|
|
earliest = self.count()
|
|
|
while h:
|
|
|
d, n = heapq.heappop(h)
|
|
|
if n not in seen:
|
|
|
seen[n] = 1
|
|
|
r = self.rev(n)
|
|
|
yield (-d, n)
|
|
|
for p in self.parents(n):
|
|
|
heapq.heappush(h, (-dist[p], p))
|
|
|
|
|
|
def generations(node):
|
|
|
sg, s = None, {}
|
|
|
for g,n in ancestors(node):
|
|
|
if g != sg:
|
|
|
if sg:
|
|
|
yield sg, s
|
|
|
sg, s = g, {n:1}
|
|
|
else:
|
|
|
s[n] = 1
|
|
|
yield sg, s
|
|
|
|
|
|
x = generations(a)
|
|
|
y = generations(b)
|
|
|
gx = x.next()
|
|
|
gy = y.next()
|
|
|
|
|
|
# increment each ancestor list until it is closer to root than
|
|
|
# the other, or they match
|
|
|
while 1:
|
|
|
#print "ancestor gen %s %s" % (gx[0], gy[0])
|
|
|
if gx[0] == gy[0]:
|
|
|
# find the intersection
|
|
|
i = [ n for n in gx[1] if n in gy[1] ]
|
|
|
if i:
|
|
|
return i[0]
|
|
|
else:
|
|
|
#print "next"
|
|
|
gy = y.next()
|
|
|
gx = x.next()
|
|
|
elif gx[0] < gy[0]:
|
|
|
#print "next y"
|
|
|
gy = y.next()
|
|
|
else:
|
|
|
#print "next x"
|
|
|
gx = x.next()
|
|
|
|
|
|
def group(self, nodelist, lookup, infocollect = None):
|
|
|
"""calculate a delta group
|
|
|
|
|
|
Given a list of changeset revs, return a set of deltas and
|
|
|
metadata corresponding to nodes. the first delta is
|
|
|
parent(nodes[0]) -> nodes[0] the receiver is guaranteed to
|
|
|
have this parent as it has all history before these
|
|
|
changesets. parent is parent[0]
|
|
|
"""
|
|
|
revs = [self.rev(n) for n in nodelist]
|
|
|
needed = dict.fromkeys(revs, 1)
|
|
|
|
|
|
# if we don't have any revisions touched by these changesets, bail
|
|
|
if not revs:
|
|
|
yield struct.pack(">l", 0)
|
|
|
return
|
|
|
|
|
|
# add the parent of the first rev
|
|
|
p = self.parents(self.node(revs[0]))[0]
|
|
|
revs.insert(0, self.rev(p))
|
|
|
|
|
|
# for each delta that isn't contiguous in the log, we need to
|
|
|
# reconstruct the base, reconstruct the result, and then
|
|
|
# calculate the delta. We also need to do this where we've
|
|
|
# stored a full version and not a delta
|
|
|
for i in xrange(0, len(revs) - 1):
|
|
|
a, b = revs[i], revs[i + 1]
|
|
|
if a + 1 != b or self.base(b) == b:
|
|
|
for j in xrange(self.base(a), a + 1):
|
|
|
needed[j] = 1
|
|
|
for j in xrange(self.base(b), b + 1):
|
|
|
needed[j] = 1
|
|
|
|
|
|
# calculate spans to retrieve from datafile
|
|
|
needed = needed.keys()
|
|
|
needed.sort()
|
|
|
spans = []
|
|
|
oo = -1
|
|
|
ol = 0
|
|
|
for n in needed:
|
|
|
if n < 0: continue
|
|
|
o = self.start(n)
|
|
|
l = self.length(n)
|
|
|
if oo + ol == o: # can we merge with the previous?
|
|
|
nl = spans[-1][2]
|
|
|
nl.append((n, l))
|
|
|
ol += l
|
|
|
spans[-1] = (oo, ol, nl)
|
|
|
else:
|
|
|
oo = o
|
|
|
ol = l
|
|
|
spans.append((oo, ol, [(n, l)]))
|
|
|
|
|
|
# read spans in, divide up chunks
|
|
|
chunks = {}
|
|
|
for span in spans:
|
|
|
# we reopen the file for each span to make http happy for now
|
|
|
f = self.opener(self.datafile)
|
|
|
f.seek(span[0])
|
|
|
data = f.read(span[1])
|
|
|
|
|
|
# divide up the span
|
|
|
pos = 0
|
|
|
for r, l in span[2]:
|
|
|
chunks[r] = decompress(data[pos: pos + l])
|
|
|
pos += l
|
|
|
|
|
|
# helper to reconstruct intermediate versions
|
|
|
def construct(text, base, rev):
|
|
|
bins = [chunks[r] for r in xrange(base + 1, rev + 1)]
|
|
|
return mdiff.patches(text, bins)
|
|
|
|
|
|
# build deltas
|
|
|
deltas = []
|
|
|
for d in xrange(0, len(revs) - 1):
|
|
|
a, b = revs[d], revs[d + 1]
|
|
|
n = self.node(b)
|
|
|
|
|
|
if infocollect is not None:
|
|
|
infocollect(n)
|
|
|
|
|
|
# do we need to construct a new delta?
|
|
|
if a + 1 != b or self.base(b) == b:
|
|
|
if a >= 0:
|
|
|
base = self.base(a)
|
|
|
ta = chunks[self.base(a)]
|
|
|
ta = construct(ta, base, a)
|
|
|
else:
|
|
|
ta = ""
|
|
|
|
|
|
base = self.base(b)
|
|
|
if a > base:
|
|
|
base = a
|
|
|
tb = ta
|
|
|
else:
|
|
|
tb = chunks[self.base(b)]
|
|
|
tb = construct(tb, base, b)
|
|
|
d = self.diff(ta, tb)
|
|
|
else:
|
|
|
d = chunks[b]
|
|
|
|
|
|
p = self.parents(n)
|
|
|
meta = n + p[0] + p[1] + lookup(n)
|
|
|
l = struct.pack(">l", len(meta) + len(d) + 4)
|
|
|
yield l
|
|
|
yield meta
|
|
|
yield d
|
|
|
|
|
|
yield struct.pack(">l", 0)
|
|
|
|
|
|
def addgroup(self, revs, linkmapper, transaction, unique=0):
|
|
|
"""
|
|
|
add a delta group
|
|
|
|
|
|
given a set of deltas, add them to the revision log. the
|
|
|
first delta is against its parent, which should be in our
|
|
|
log, the rest are against the previous delta.
|
|
|
"""
|
|
|
|
|
|
#track the base of the current delta log
|
|
|
r = self.count()
|
|
|
t = r - 1
|
|
|
node = nullid
|
|
|
|
|
|
base = prev = -1
|
|
|
start = end = measure = 0
|
|
|
if r:
|
|
|
start = self.start(self.base(t))
|
|
|
end = self.end(t)
|
|
|
measure = self.length(self.base(t))
|
|
|
base = self.base(t)
|
|
|
prev = self.tip()
|
|
|
|
|
|
transaction.add(self.datafile, end)
|
|
|
transaction.add(self.indexfile, r * struct.calcsize(indexformat))
|
|
|
dfh = self.opener(self.datafile, "a")
|
|
|
ifh = self.opener(self.indexfile, "a")
|
|
|
|
|
|
# loop through our set of deltas
|
|
|
chain = None
|
|
|
for chunk in revs:
|
|
|
node, p1, p2, cs = struct.unpack("20s20s20s20s", chunk[:80])
|
|
|
link = linkmapper(cs)
|
|
|
if node in self.nodemap:
|
|
|
# this can happen if two branches make the same change
|
|
|
# if unique:
|
|
|
# raise RevlogError(_("already have %s") % hex(node[:4]))
|
|
|
chain = node
|
|
|
continue
|
|
|
delta = chunk[80:]
|
|
|
|
|
|
for p in (p1, p2):
|
|
|
if not p in self.nodemap:
|
|
|
raise RevlogError(_("unknown parent %s") % short(p1))
|
|
|
|
|
|
if not chain:
|
|
|
# retrieve the parent revision of the delta chain
|
|
|
chain = p1
|
|
|
if not chain in self.nodemap:
|
|
|
raise RevlogError(_("unknown base %s") % short(chain[:4]))
|
|
|
|
|
|
# full versions are inserted when the needed deltas become
|
|
|
# comparable to the uncompressed text or when the previous
|
|
|
# version is not the one we have a delta against. We use
|
|
|
# the size of the previous full rev as a proxy for the
|
|
|
# current size.
|
|
|
|
|
|
if chain == prev:
|
|
|
tempd = compress(delta)
|
|
|
cdelta = tempd[0] + tempd[1]
|
|
|
|
|
|
if chain != prev or (end - start + len(cdelta)) > measure * 2:
|
|
|
# flush our writes here so we can read it in revision
|
|
|
dfh.flush()
|
|
|
ifh.flush()
|
|
|
text = self.revision(chain)
|
|
|
text = self.patches(text, [delta])
|
|
|
chk = self.addrevision(text, transaction, link, p1, p2)
|
|
|
if chk != node:
|
|
|
raise RevlogError(_("consistency error adding group"))
|
|
|
measure = len(text)
|
|
|
else:
|
|
|
e = (end, len(cdelta), self.base(t), link, p1, p2, node)
|
|
|
self.index.append(e)
|
|
|
self.nodemap[node] = r
|
|
|
dfh.write(cdelta)
|
|
|
ifh.write(struct.pack(indexformat, *e))
|
|
|
|
|
|
t, r, chain, prev = r, r + 1, node, node
|
|
|
start = self.start(self.base(t))
|
|
|
end = self.end(t)
|
|
|
|
|
|
dfh.close()
|
|
|
ifh.close()
|
|
|
return node
|
|
|
|
|
|
def strip(self, rev, minlink):
|
|
|
if self.count() == 0 or rev >= self.count():
|
|
|
return
|
|
|
|
|
|
# When stripping away a revision, we need to make sure it
|
|
|
# does not actually belong to an older changeset.
|
|
|
# The minlink parameter defines the oldest revision
|
|
|
# we're allowed to strip away.
|
|
|
while minlink > self.index[rev][3]:
|
|
|
rev += 1
|
|
|
if rev >= self.count():
|
|
|
return
|
|
|
|
|
|
# first truncate the files on disk
|
|
|
end = self.start(rev)
|
|
|
self.opener(self.datafile, "a").truncate(end)
|
|
|
end = rev * struct.calcsize(indexformat)
|
|
|
self.opener(self.indexfile, "a").truncate(end)
|
|
|
|
|
|
# then reset internal state in memory to forget those revisions
|
|
|
self.cache = None
|
|
|
for p in self.index[rev:]:
|
|
|
del self.nodemap[p[6]]
|
|
|
del self.index[rev:]
|
|
|
|
|
|
# truncating the lazyindex also truncates the lazymap.
|
|
|
if isinstance(self.index, lazyindex):
|
|
|
self.index.trunc(end)
|
|
|
|
|
|
|
|
|
def checksize(self):
|
|
|
expected = 0
|
|
|
if self.count():
|
|
|
expected = self.end(self.count() - 1)
|
|
|
try:
|
|
|
f = self.opener(self.datafile)
|
|
|
f.seek(0, 2)
|
|
|
actual = f.tell()
|
|
|
return expected - actual
|
|
|
except IOError, inst:
|
|
|
if inst.errno == errno.ENOENT:
|
|
|
return 0
|
|
|
raise
|
|
|
|
|
|
|
|
|
|