##// END OF EJS Templates
py: error out if a "skip" character was given with non-dict to util.dirs()...
py: error out if a "skip" character was given with non-dict to util.dirs() util.dirs() keeps track of the directories in its input collection. If a "skip" character is given to it, it will assume the input is a dirstate map and it will skip entries that are in the given "skip" state. I think this is used only for skipping removed entries ("r") in the dirtate. The C implementation of util.dirs() errors out if it was given a skip character and a non-dict was passed. The pure implementation simply ignored the request skip state. Let's make it easier to discover bugs here by erroring out in the pure implementation too. Let's also switch to checking for the dict-ness, to make the C implementation (since that's clearly been sufficient for many years). This last change makes test-issue660.t pass on py3 in pure mode, since the old check was for existence of iteritems(), which doesn't exist on py3. Differential Revision: https://phab.mercurial-scm.org/D6669

File last commit:

r40008:7a0ffdd4 default
r42864:b5092c23 stable
Show More
attachio.rs
97 lines | 3.6 KiB | application/rls-services+xml | RustLexer
// Copyright 2018 Yuya Nishihara <yuya@tcha.org>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Functions to send client-side fds over the command server channel.
use futures::{Async, Future, Poll};
use std::io;
use std::os::unix::io::AsRawFd;
use tokio_hglib::{Client, Connection};
use tokio_hglib::codec::ChannelMessage;
use tokio_hglib::protocol::MessageLoop;
use super::message;
use super::procutil;
/// Future to send client-side fds over the command server channel.
///
/// This works as follows:
/// 1. Client sends "attachio" request.
/// 2. Server sends back 1-byte input request.
/// 3. Client sends fds with 1-byte dummy payload in response.
/// 4. Server returns the number of the fds received.
///
/// If the stderr is omitted, it will be redirected to the stdout. This
/// allows us to attach the pager stdin to both stdout and stderr, and
/// dispose of the client-side handle once attached.
#[must_use = "futures do nothing unless polled"]
pub struct AttachIo<C, I, O, E>
where C: Connection,
{
msg_loop: MessageLoop<C>,
stdin: I,
stdout: O,
stderr: Option<E>,
}
impl<C, I, O, E> AttachIo<C, I, O, E>
where C: Connection + AsRawFd,
I: AsRawFd,
O: AsRawFd,
E: AsRawFd,
{
pub fn with_client(client: Client<C>, stdin: I, stdout: O, stderr: Option<E>)
-> AttachIo<C, I, O, E> {
let msg_loop = MessageLoop::start(client, b"attachio");
AttachIo { msg_loop, stdin, stdout, stderr }
}
}
impl<C, I, O, E> Future for AttachIo<C, I, O, E>
where C: Connection + AsRawFd,
I: AsRawFd,
O: AsRawFd,
E: AsRawFd,
{
type Item = Client<C>;
type Error = io::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
loop {
let (client, msg) = try_ready!(self.msg_loop.poll());
match msg {
ChannelMessage::Data(b'r', data) => {
let fd_cnt = message::parse_result_code(data)?;
if fd_cnt == 3 {
return Ok(Async::Ready(client));
} else {
return Err(io::Error::new(io::ErrorKind::InvalidData,
"unexpected attachio result"));
}
}
ChannelMessage::Data(..) => {
// just ignore data sent to uninteresting (optional) channel
self.msg_loop = MessageLoop::resume(client);
}
ChannelMessage::InputRequest(1) => {
// this may fail with EWOULDBLOCK in theory, but the
// payload is quite small, and the send buffer should
// be empty so the operation will complete immediately
let sock_fd = client.as_raw_fd();
let ifd = self.stdin.as_raw_fd();
let ofd = self.stdout.as_raw_fd();
let efd = self.stderr.as_ref().map_or(ofd, |f| f.as_raw_fd());
procutil::send_raw_fds(sock_fd, &[ifd, ofd, efd])?;
self.msg_loop = MessageLoop::resume(client);
}
ChannelMessage::InputRequest(..) | ChannelMessage::LineRequest(..) |
ChannelMessage::SystemRequest(..) => {
return Err(io::Error::new(io::ErrorKind::InvalidData,
"unsupported request while attaching io"));
}
}
}
}
}