##// END OF EJS Templates
nodemap: gate the feature behind a new requirement...
nodemap: gate the feature behind a new requirement Now that the feature is working smoothly, a question was still open, should we gate the feature behind a new requirement or just treat it as a cache to be warmed by those who can and ignored by other. The advantage of using the cache approach is a transparent upgrade/downgrade story, making the feature easier to move to. However having out of date cache can come with a significant performance hit for process who expect an up to date cache but found none. In this case the file needs to be stored under `.hg/cache`. The "requirement" approach guarantee that the persistent nodemap is up to date. However, it comes with a less flexible activation story since an explicite upgrade is required. In this case the file can be stored in `.hg/store`. This wiki page is relevant to this questions: https://www.mercurial-scm.org/wiki/ComputedIndexPlan So which one should we take? Another element came into plan, the persistent nodemap use the `add` method of the transaction, it is used to keep track of a file content before a transaction in case we need to rollback it back. It turns out that the `transaction.add` API does not support file stored anywhere than `.hg/store`. Making it support file stored elsewhere is possible, require a change in on disk transaction format. Updating on disk file requires… introducing a new requirements. As a result, we pick the second option "gating the persistent nodemap behind a new requirements". Differential Revision: https://phab.mercurial-scm.org/D8417

File last commit:

r43346:2372284d default
r45295:b81486b6 default
Show More
constants.py
57 lines | 1.9 KiB | text/x-python | PythonLexer
# revlogdeltas.py - constant used for revlog logic
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
# Copyright 2018 Octobus <contact@octobus.net>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
"""Helper class to compute deltas stored inside revlogs"""
from __future__ import absolute_import
from ..interfaces import repository
# revlog header flags
REVLOGV0 = 0
REVLOGV1 = 1
# Dummy value until file format is finalized.
# Reminder: change the bounds check in revlog.__init__ when this is changed.
REVLOGV2 = 0xDEAD
# Shared across v1 and v2.
FLAG_INLINE_DATA = 1 << 16
# Only used by v1, implied by v2.
FLAG_GENERALDELTA = 1 << 17
REVLOG_DEFAULT_FLAGS = FLAG_INLINE_DATA
REVLOG_DEFAULT_FORMAT = REVLOGV1
REVLOG_DEFAULT_VERSION = REVLOG_DEFAULT_FORMAT | REVLOG_DEFAULT_FLAGS
REVLOGV1_FLAGS = FLAG_INLINE_DATA | FLAG_GENERALDELTA
REVLOGV2_FLAGS = FLAG_INLINE_DATA
# revlog index flags
# For historical reasons, revlog's internal flags were exposed via the
# wire protocol and are even exposed in parts of the storage APIs.
# revision has censor metadata, must be verified
REVIDX_ISCENSORED = repository.REVISION_FLAG_CENSORED
# revision hash does not match data (narrowhg)
REVIDX_ELLIPSIS = repository.REVISION_FLAG_ELLIPSIS
# revision data is stored externally
REVIDX_EXTSTORED = repository.REVISION_FLAG_EXTSTORED
# revision data contains extra metadata not part of the official digest
REVIDX_SIDEDATA = repository.REVISION_FLAG_SIDEDATA
REVIDX_DEFAULT_FLAGS = 0
# stable order in which flags need to be processed and their processors applied
REVIDX_FLAGS_ORDER = [
REVIDX_ISCENSORED,
REVIDX_ELLIPSIS,
REVIDX_EXTSTORED,
REVIDX_SIDEDATA,
]
# bitmark for flags that could cause rawdata content change
REVIDX_RAWTEXT_CHANGING_FLAGS = (
REVIDX_ISCENSORED | REVIDX_EXTSTORED | REVIDX_SIDEDATA
)
SPARSE_REVLOG_MAX_CHAIN_LENGTH = 1000