##// END OF EJS Templates
scmutil: accept multiple predecessors in 'replacements' (API)...
scmutil: accept multiple predecessors in 'replacements' (API) This changeset makes 'cleanupnodes' accepts multiple predecessors as `replacements` keys. The same as it accepts multiple successors as `replacements` values. To avoid breaking all callers, the old and new ways are currently valid at the same time. We'll deprecate and drop the old way later. This change is the first step toward a better tracking of "fold" event in the evolution history. While working on the "rewind" command (in the evolve extension), we realized that first class tracking of folds are necessary. We already have good tracking of splits. When walking the evolution history from predecessors to successors, that makes for a clear distinction between having multiple successors because of the actual splitting of a changeset or content-divergences. The "rewind" command allows restoring older evolution of a stack of changesets. One of its mode walks the evolution history to automatically find appropriate predecessors. This means walking from successors to predecessors. In this case, we need to be able to make the same distinction between an actual fold and other cases. So we will have to track folds explicitly. This changesets only focus on making it possible to express fold at the `cleanupnodes` API level. The actual tracking will be implemented later.

File last commit:

r39304:0dfcc348 default
r39927:b9990353 default
Show More
merge-tools.txt
109 lines | 4.4 KiB | text/plain | TextLexer
To merge files Mercurial uses merge tools.
A merge tool combines two different versions of a file into a merged
file. Merge tools are given the two files and the greatest common
ancestor of the two file versions, so they can determine the changes
made on both branches.
Merge tools are used both for :hg:`resolve`, :hg:`merge`, :hg:`update`,
:hg:`backout` and in several extensions.
Usually, the merge tool tries to automatically reconcile the files by
combining all non-overlapping changes that occurred separately in
the two different evolutions of the same initial base file. Furthermore, some
interactive merge programs make it easier to manually resolve
conflicting merges, either in a graphical way, or by inserting some
conflict markers. Mercurial does not include any interactive merge
programs but relies on external tools for that.
Available merge tools
=====================
External merge tools and their properties are configured in the
merge-tools configuration section - see hgrc(5) - but they can often just
be named by their executable.
A merge tool is generally usable if its executable can be found on the
system and if it can handle the merge. The executable is found if it
is an absolute or relative executable path or the name of an
application in the executable search path. The tool is assumed to be
able to handle the merge if it can handle symlinks if the file is a
symlink, if it can handle binary files if the file is binary, and if a
GUI is available if the tool requires a GUI.
There are some internal merge tools which can be used. The internal
merge tools are:
.. internaltoolsmarker
Internal tools are always available and do not require a GUI but will
by default not handle symlinks or binary files. See next section for
detail about "actual capabilities" described above.
Choosing a merge tool
=====================
Mercurial uses these rules when deciding which merge tool to use:
1. If a tool has been specified with the --tool option to merge or resolve, it
is used. If it is the name of a tool in the merge-tools configuration, its
configuration is used. Otherwise the specified tool must be executable by
the shell.
2. If the ``HGMERGE`` environment variable is present, its value is used and
must be executable by the shell.
3. If the filename of the file to be merged matches any of the patterns in the
merge-patterns configuration section, the first usable merge tool
corresponding to a matching pattern is used.
4. If ui.merge is set it will be considered next. If the value is not the name
of a configured tool, the specified value is used and must be executable by
the shell. Otherwise the named tool is used if it is usable.
5. If any usable merge tools are present in the merge-tools configuration
section, the one with the highest priority is used.
6. If a program named ``hgmerge`` can be found on the system, it is used - but
it will by default not be used for symlinks and binary files.
7. If the file to be merged is not binary and is not a symlink, then
internal ``:merge`` is used.
8. Otherwise, ``:prompt`` is used.
For historical reason, Mercurial treats merge tools as below while
examining rules above.
==== =============== ====== =======
step specified via binary symlink
==== =============== ====== =======
1. --tool o/o o/o
2. HGMERGE o/o o/o
3. merge-patterns o/o(*) x/?(*)
4. ui.merge x/?(*) x/?(*)
==== =============== ====== =======
Each capability column indicates Mercurial behavior for
internal/external merge tools at examining each rule.
- "o": "assume that a tool has capability"
- "x": "assume that a tool does not have capability"
- "?": "check actual capability of a tool"
If ``merge.strict-capability-check`` configuration is true, Mercurial
checks capabilities of merge tools strictly in (*) cases above (= each
capability column becomes "?/?"). It is false by default for backward
compatibility.
.. note::
After selecting a merge program, Mercurial will by default attempt
to merge the files using a simple merge algorithm first. Only if it doesn't
succeed because of conflicting changes will Mercurial actually execute the
merge program. Whether to use the simple merge algorithm first can be
controlled by the premerge setting of the merge tool. Premerge is enabled by
default unless the file is binary or a symlink.
See the merge-tools and ui sections of hgrc(5) for details on the
configuration of merge tools.