##// END OF EJS Templates
hidden: change _domainancestors() to _revealancestors()...
hidden: change _domainancestors() to _revealancestors() This change makes the function actually reveal the ancestors by removing them from the hidden set. This prepares for further simplification. Note that the function will now only reveal contiguous chains of hidden revisions, but that's fine because we always pass it an immediate child of any revision that should be revealed (or the revision itself). This doesn't seem to have much impact on "perfvolatilesets". Before: ! obsolete ! wall 0.004672 comb 0.010000 user 0.010000 sys 0.000000 (best of 590) ! visible ! wall 0.008936 comb 0.010000 user 0.010000 sys 0.000000 (best of 322) After: ! obsolete ! wall 0.004903 comb 0.000000 user 0.000000 sys 0.000000 (best of 535) ! visible ! wall 0.008913 comb 0.010000 user 0.010000 sys 0.000000 (best of 300)

File last commit:

r32581:b9b41d8f default
r32581:b9b41d8f default
Show More
repoview.py
293 lines | 10.7 KiB | text/x-python | PythonLexer
# repoview.py - Filtered view of a localrepo object
#
# Copyright 2012 Pierre-Yves David <pierre-yves.david@ens-lyon.org>
# Logilab SA <contact@logilab.fr>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import copy
from .node import nullrev
from . import (
obsolete,
phases,
tags as tagsmod,
)
def hideablerevs(repo):
"""Revision candidates to be hidden
This is a standalone function to allow extensions to wrap it.
Because we use the set of immutable changesets as a fallback subset in
branchmap (see mercurial.branchmap.subsettable), you cannot set "public"
changesets as "hideable". Doing so would break multiple code assertions and
lead to crashes."""
return obsolete.getrevs(repo, 'obsolete')
def pinnedrevs(repo):
"""revisions blocking hidden changesets from being filtered
"""
cl = repo.changelog
pinned = set()
pinned.update([par.rev() for par in repo[None].parents()])
pinned.update([cl.rev(bm) for bm in repo._bookmarks.values()])
tags = {}
tagsmod.readlocaltags(repo.ui, repo, tags, {})
if tags:
rev, nodemap = cl.rev, cl.nodemap
pinned.update(rev(t[0]) for t in tags.values() if t[0] in nodemap)
return pinned
def _consistencyblocker(pfunc, hideable, domain):
"""return non-hideable changeset blocking hideable one
For consistency, we cannot actually hide a changeset if one of it children
are visible, this function find such children.
"""
others = domain - hideable
blockers = set()
for r in others:
for p in pfunc(r):
if p != nullrev and p in hideable:
blockers.add(r)
break
return blockers
def _revealancestors(pfunc, hidden, revs, domain):
"""reveals contiguous chains of hidden ancestors of 'revs' within 'domain'
by removing them from 'hidden'
- pfunc(r): a funtion returning parent of 'r',
- hidden: the (preliminary) hidden revisions, to be updated
- revs: iterable of revnum,
- domain: consistent set of revnum.
The domain must be consistent: no connected subset are the ancestors of
another connected subset. In other words, if the parents of a revision are
not in the domains, no other ancestors of that revision. For example, with
the following graph:
F
|
E
| D
| |
| C
|/
B
|
A
If C, D, E and F are in the domain but B is not, A cannot be ((A) is an
ancestors disconnected subset disconnected of (C+D)).
(Ancestors are revealed inclusively, i.e. the elements in 'revs' are
also revealed)
"""
stack = list(revs)
hidden -= set(stack)
while stack:
for p in pfunc(stack.pop()):
if p != nullrev and p in domain and p in hidden:
hidden.remove(p)
stack.append(p)
def computehidden(repo):
"""compute the set of hidden revision to filter
During most operation hidden should be filtered."""
assert not repo.changelog.filteredrevs
hidden = hideablerevs(repo)
if hidden:
pfunc = repo.changelog.parentrevs
mutablephases = (phases.draft, phases.secret)
mutable = repo._phasecache.getrevset(repo, mutablephases)
blockers = _consistencyblocker(pfunc, hidden, mutable)
# check if we have wd parents, bookmarks or tags pointing to hidden
# changesets and remove those.
blockers |= (hidden & pinnedrevs(repo))
if blockers:
# don't modify possibly cached result of hideablerevs()
hidden = hidden.copy()
_revealancestors(pfunc, hidden, blockers, mutable)
return frozenset(hidden)
def computeunserved(repo):
"""compute the set of revision that should be filtered when used a server
Secret and hidden changeset should not pretend to be here."""
assert not repo.changelog.filteredrevs
# fast path in simple case to avoid impact of non optimised code
hiddens = filterrevs(repo, 'visible')
if phases.hassecret(repo):
cl = repo.changelog
secret = phases.secret
getphase = repo._phasecache.phase
first = min(cl.rev(n) for n in repo._phasecache.phaseroots[secret])
revs = cl.revs(start=first)
secrets = set(r for r in revs if getphase(repo, r) >= secret)
return frozenset(hiddens | secrets)
else:
return hiddens
def computemutable(repo):
"""compute the set of revision that should be filtered when used a server
Secret and hidden changeset should not pretend to be here."""
assert not repo.changelog.filteredrevs
# fast check to avoid revset call on huge repo
if any(repo._phasecache.phaseroots[1:]):
getphase = repo._phasecache.phase
maymutable = filterrevs(repo, 'base')
return frozenset(r for r in maymutable if getphase(repo, r))
return frozenset()
def computeimpactable(repo):
"""Everything impactable by mutable revision
The immutable filter still have some chance to get invalidated. This will
happen when:
- you garbage collect hidden changeset,
- public phase is moved backward,
- something is changed in the filtering (this could be fixed)
This filter out any mutable changeset and any public changeset that may be
impacted by something happening to a mutable revision.
This is achieved by filtered everything with a revision number egal or
higher than the first mutable changeset is filtered."""
assert not repo.changelog.filteredrevs
cl = repo.changelog
firstmutable = len(cl)
for roots in repo._phasecache.phaseroots[1:]:
if roots:
firstmutable = min(firstmutable, min(cl.rev(r) for r in roots))
# protect from nullrev root
firstmutable = max(0, firstmutable)
return frozenset(xrange(firstmutable, len(cl)))
# function to compute filtered set
#
# When adding a new filter you MUST update the table at:
# mercurial.branchmap.subsettable
# Otherwise your filter will have to recompute all its branches cache
# from scratch (very slow).
filtertable = {'visible': computehidden,
'served': computeunserved,
'immutable': computemutable,
'base': computeimpactable}
def filterrevs(repo, filtername):
"""returns set of filtered revision for this filter name"""
if filtername not in repo.filteredrevcache:
func = filtertable[filtername]
repo.filteredrevcache[filtername] = func(repo.unfiltered())
return repo.filteredrevcache[filtername]
class repoview(object):
"""Provide a read/write view of a repo through a filtered changelog
This object is used to access a filtered version of a repository without
altering the original repository object itself. We can not alter the
original object for two main reasons:
- It prevents the use of a repo with multiple filters at the same time. In
particular when multiple threads are involved.
- It makes scope of the filtering harder to control.
This object behaves very closely to the original repository. All attribute
operations are done on the original repository:
- An access to `repoview.someattr` actually returns `repo.someattr`,
- A write to `repoview.someattr` actually sets value of `repo.someattr`,
- A deletion of `repoview.someattr` actually drops `someattr`
from `repo.__dict__`.
The only exception is the `changelog` property. It is overridden to return
a (surface) copy of `repo.changelog` with some revisions filtered. The
`filtername` attribute of the view control the revisions that need to be
filtered. (the fact the changelog is copied is an implementation detail).
Unlike attributes, this object intercepts all method calls. This means that
all methods are run on the `repoview` object with the filtered `changelog`
property. For this purpose the simple `repoview` class must be mixed with
the actual class of the repository. This ensures that the resulting
`repoview` object have the very same methods than the repo object. This
leads to the property below.
repoview.method() --> repo.__class__.method(repoview)
The inheritance has to be done dynamically because `repo` can be of any
subclasses of `localrepo`. Eg: `bundlerepo` or `statichttprepo`.
"""
def __init__(self, repo, filtername):
object.__setattr__(self, r'_unfilteredrepo', repo)
object.__setattr__(self, r'filtername', filtername)
object.__setattr__(self, r'_clcachekey', None)
object.__setattr__(self, r'_clcache', None)
# not a propertycache on purpose we shall implement a proper cache later
@property
def changelog(self):
"""return a filtered version of the changeset
this changelog must not be used for writing"""
# some cache may be implemented later
unfi = self._unfilteredrepo
unfichangelog = unfi.changelog
# bypass call to changelog.method
unfiindex = unfichangelog.index
unfilen = len(unfiindex) - 1
unfinode = unfiindex[unfilen - 1][7]
revs = filterrevs(unfi, self.filtername)
cl = self._clcache
newkey = (unfilen, unfinode, hash(revs), unfichangelog._delayed)
# if cl.index is not unfiindex, unfi.changelog would be
# recreated, and our clcache refers to garbage object
if (cl is not None and
(cl.index is not unfiindex or newkey != self._clcachekey)):
cl = None
# could have been made None by the previous if
if cl is None:
cl = copy.copy(unfichangelog)
cl.filteredrevs = revs
object.__setattr__(self, r'_clcache', cl)
object.__setattr__(self, r'_clcachekey', newkey)
return cl
def unfiltered(self):
"""Return an unfiltered version of a repo"""
return self._unfilteredrepo
def filtered(self, name):
"""Return a filtered version of a repository"""
if name == self.filtername:
return self
return self.unfiltered().filtered(name)
# everything access are forwarded to the proxied repo
def __getattr__(self, attr):
return getattr(self._unfilteredrepo, attr)
def __setattr__(self, attr, value):
return setattr(self._unfilteredrepo, attr, value)
def __delattr__(self, attr):
return delattr(self._unfilteredrepo, attr)
# The `requirements` attribute is initialized during __init__. But
# __getattr__ won't be called as it also exists on the class. We need
# explicit forwarding to main repo here
@property
def requirements(self):
return self._unfilteredrepo.requirements