##// END OF EJS Templates
spanset: directly use __contains__ instead of a lambda...
spanset: directly use __contains__ instead of a lambda Spanset are massively used in revset. First because the initial subset itself is a repo wide spanset. We speed up the __and__ operation by getting rid of a gratuitous lambda call. A more long terms solution would be to: 1. speed up operation between spansets, 2. have a special smartset for `all` revisions. In the mean time, this is a very simple fix that buyback some of the performance regression. Below is performance benchmark for trival `and` operation between two spansets. (Run on an unspecified fairly large repository.) revset tip:0 2.9.2) wall 0.282543 comb 0.280000 user 0.260000 sys 0.020000 (best of 35) before) wall 0.819181 comb 0.820000 user 0.820000 sys 0.000000 (best of 12) after) wall 0.645358 comb 0.650000 user 0.650000 sys 0.000000 (best of 16) Proof of concept implementation of an `all` smartset brings this to 0.10 but it's too invasive for stable.

File last commit:

r20380:c697b70f default
r21207:b9defeeb stable
Show More
lock.py
154 lines | 5.0 KiB | text/x-python | PythonLexer
# lock.py - simple advisory locking scheme for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
import util, error
import errno, os, socket, time
import warnings
class lock(object):
'''An advisory lock held by one process to control access to a set
of files. Non-cooperating processes or incorrectly written scripts
can ignore Mercurial's locking scheme and stomp all over the
repository, so don't do that.
Typically used via localrepository.lock() to lock the repository
store (.hg/store/) or localrepository.wlock() to lock everything
else under .hg/.'''
# lock is symlink on platforms that support it, file on others.
# symlink is used because create of directory entry and contents
# are atomic even over nfs.
# old-style lock: symlink to pid
# new-style lock: symlink to hostname:pid
_host = None
def __init__(self, vfs, file, timeout=-1, releasefn=None, desc=None):
self.vfs = vfs
self.f = file
self.held = 0
self.timeout = timeout
self.releasefn = releasefn
self.desc = desc
self.postrelease = []
self.pid = os.getpid()
self.delay = self.lock()
def __del__(self):
if self.held:
warnings.warn("use lock.release instead of del lock",
category=DeprecationWarning,
stacklevel=2)
# ensure the lock will be removed
# even if recursive locking did occur
self.held = 1
self.release()
def lock(self):
timeout = self.timeout
while True:
try:
self.trylock()
return self.timeout - timeout
except error.LockHeld, inst:
if timeout != 0:
time.sleep(1)
if timeout > 0:
timeout -= 1
continue
raise error.LockHeld(errno.ETIMEDOUT, inst.filename, self.desc,
inst.locker)
def trylock(self):
if self.held:
self.held += 1
return
if lock._host is None:
lock._host = socket.gethostname()
lockname = '%s:%s' % (lock._host, self.pid)
while not self.held:
try:
self.vfs.makelock(lockname, self.f)
self.held = 1
except (OSError, IOError), why:
if why.errno == errno.EEXIST:
locker = self.testlock()
if locker is not None:
raise error.LockHeld(errno.EAGAIN,
self.vfs.join(self.f), self.desc,
locker)
else:
raise error.LockUnavailable(why.errno, why.strerror,
why.filename, self.desc)
def testlock(self):
"""return id of locker if lock is valid, else None.
If old-style lock, we cannot tell what machine locker is on.
with new-style lock, if locker is on this machine, we can
see if locker is alive. If locker is on this machine but
not alive, we can safely break lock.
The lock file is only deleted when None is returned.
"""
try:
locker = self.vfs.readlock(self.f)
except (OSError, IOError), why:
if why.errno == errno.ENOENT:
return None
raise
try:
host, pid = locker.split(":", 1)
except ValueError:
return locker
if host != lock._host:
return locker
try:
pid = int(pid)
except ValueError:
return locker
if util.testpid(pid):
return locker
# if locker dead, break lock. must do this with another lock
# held, or can race and break valid lock.
try:
l = lock(self.vfs, self.f + '.break', timeout=0)
self.vfs.unlink(self.f)
l.release()
except error.LockError:
return locker
def release(self):
"""release the lock and execute callback function if any
If the lock has been acquired multiple times, the actual release is
delayed to the last release call."""
if self.held > 1:
self.held -= 1
elif self.held == 1:
self.held = 0
if os.getpid() != self.pid:
# we forked, and are not the parent
return
if self.releasefn:
self.releasefn()
try:
self.vfs.unlink(self.f)
except OSError:
pass
for callback in self.postrelease:
callback()
def release(*locks):
for lock in locks:
if lock is not None:
lock.release()