##// END OF EJS Templates
discovery: be more conservative when adjusting the sample size...
discovery: be more conservative when adjusting the sample size Since 5b34972a0094, the discovery will increase the sample size when it detect a "complex" undecided set. However this detection focussed on the number of roots only, this could regress discovery performance when the undecided set has many roots that eventually get merged into a few heads. To prevent such misbehavior, we adjust the logic to take in account both heads and roots. The sample size will be increased only if both are especially large. Performance testing on the same case as 5b34972a0094, does not show a significant difference.

File last commit:

r42615:0ae593e7 default
r42618:b9ff059f default
Show More
profiling.py
254 lines | 8.1 KiB | text/x-python | PythonLexer
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
from .i18n import _
from . import (
encoding,
error,
extensions,
pycompat,
util,
)
def _loadprofiler(ui, profiler):
"""load profiler extension. return profile method, or None on failure"""
extname = profiler
extensions.loadall(ui, whitelist=[extname])
try:
mod = extensions.find(extname)
except KeyError:
return None
else:
return getattr(mod, 'profile', None)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format')
field = ui.config('profiling', 'sort')
limit = ui.configint('profiling', 'limit')
climit = ui.configint('profiling', 'nested')
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(pycompat.sysstr(field))
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq')
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = util.timer()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
util.timer() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
from . import statprof
freq = ui.configint('profiling', 'freq')
if freq > 0:
# Cannot reset when profiler is already active. So silently no-op.
if statprof.state.profile_level == 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
track = ui.config('profiling', 'time-track',
pycompat.iswindows and 'cpu' or 'real')
statprof.start(mechanism='thread', track=track)
try:
yield
finally:
data = statprof.stop()
profformat = ui.config('profiling', 'statformat')
formats = {
'byline': statprof.DisplayFormats.ByLine,
'bymethod': statprof.DisplayFormats.ByMethod,
'hotpath': statprof.DisplayFormats.Hotpath,
'json': statprof.DisplayFormats.Json,
'chrome': statprof.DisplayFormats.Chrome,
}
if profformat in formats:
displayformat = formats[profformat]
else:
ui.warn(_('unknown profiler output format: %s\n') % profformat)
displayformat = statprof.DisplayFormats.Hotpath
kwargs = {}
def fraction(s):
if isinstance(s, (float, int)):
return float(s)
if s.endswith('%'):
v = float(s[:-1]) / 100
else:
v = float(s)
if 0 <= v <= 1:
return v
raise ValueError(s)
if profformat == 'chrome':
showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
showmax = ui.configwith(fraction, 'profiling', 'showmax')
kwargs.update(minthreshold=showmin, maxthreshold=showmax)
elif profformat == 'hotpath':
# inconsistent config: profiling.showmin
limit = ui.configwith(fraction, 'profiling', 'showmin', 0.05)
kwargs[r'limit'] = limit
showtime = ui.configbool('profiling', 'showtime')
kwargs[r'showtime'] = showtime
statprof.display(fp, data=data, format=displayformat, **kwargs)
class profile(object):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
def __init__(self, ui, enabled=True):
self._ui = ui
self._output = None
self._fp = None
self._fpdoclose = True
self._profiler = None
self._enabled = enabled
self._entered = False
self._started = False
def __enter__(self):
self._entered = True
if self._enabled:
self.start()
return self
def start(self):
"""Start profiling.
The profiling will stop at the context exit.
If the profiler was already started, this has no effect."""
if not self._entered:
raise error.ProgrammingError()
if self._started:
return
self._started = True
profiler = encoding.environ.get('HGPROF')
proffn = None
if profiler is None:
profiler = self._ui.config('profiling', 'type')
if profiler not in ('ls', 'stat', 'flame'):
# try load profiler from extension with the same name
proffn = _loadprofiler(self._ui, profiler)
if proffn is None:
self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
% profiler)
profiler = 'stat'
self._output = self._ui.config('profiling', 'output')
try:
if self._output == 'blackbox':
self._fp = util.stringio()
elif self._output:
path = self._ui.expandpath(self._output)
self._fp = open(path, 'wb')
elif pycompat.iswindows:
# parse escape sequence by win32print()
class uifp(object):
def __init__(self, ui):
self._ui = ui
def write(self, data):
self._ui.write_err(data)
def flush(self):
self._ui.flush()
self._fpdoclose = False
self._fp = uifp(self._ui)
else:
self._fpdoclose = False
self._fp = self._ui.ferr
if proffn is not None:
pass
elif profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
self._profiler = proffn(self._ui, self._fp)
self._profiler.__enter__()
except: # re-raises
self._closefp()
raise
def __exit__(self, exception_type, exception_value, traceback):
propagate = None
if self._profiler is not None:
propagate = self._profiler.__exit__(exception_type, exception_value,
traceback)
if self._output == 'blackbox':
val = 'Profile:\n%s' % self._fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
self._ui.log('profile', val)
self._closefp()
return propagate
def _closefp(self):
if self._fpdoclose and self._fp is not None:
self._fp.close()