##// END OF EJS Templates
dirstate: Remove the flat Rust DirstateMap implementation...
dirstate: Remove the flat Rust DirstateMap implementation Before this changeset we had two Rust implementations of `DirstateMap`. This removes the "flat" DirstateMap so that the "tree" DirstateMap is always used when Rust enabled. This simplifies the code a lot, and will enable (in the next changeset) further removal of a trait abstraction. This is a performance regression when: * Rust is enabled, and * The repository uses the legacy dirstate-v1 file format, and * For `hg status`, unknown files are not listed (such as with `-mard`) The regression is about 100 milliseconds for `hg status -mard` on a semi-large repository (mozilla-central), from ~320ms to ~420ms. We deem this to be small enough to be worth it. The new dirstate-v2 is still experimental at this point, but we aim to stabilize it (though not yet enable it by default for new repositories) in Mercurial 6.0. Eventually, upgrating repositories to dirsate-v2 will eliminate this regression (and enable other performance improvements). # Background The flat DirstateMap was introduced with the first Rust implementation of the status algorithm. It works similarly to the previous Python + C one, with a single `HashMap` that associates file paths to a `DirstateEntry` (where Python has a dict). We later added the tree DirstateMap where the root of the tree contains nodes for files and directories that are directly at the root of the repository, and nodes for directories can contain child nodes representing the files and directly that *they* contain directly. The shape of this tree mirrors that of the working directory in the filesystem. This enables the status algorithm to traverse this tree in tandem with traversing the filesystem tree, which in turns enables a more efficient algorithm. Furthermore, the new dirstate-v2 file format is also based on a tree of the same shape. The tree DirstateMap can access a dirstate-v2 file without parsing it: binary data in a single large (possibly memory-mapped) bytes buffer is traversed on demand. This allows `DirstateMap` creation to take `O(1)` time. (Mutation works by creating new in-memory nodes with copy-on-write semantics, and serialization is append-mostly.) The tradeoff is that for "legacy" repositories that use the dirstate-v1 file format, parsing that file into a tree DirstateMap takes more time. Profiling shows that this time is dominated by `HashMap`. For a dirstate containing `F` files with an average `D` directory depth, the flat DirstateMap does parsing in `O(F)` number of HashMap operations but the tree DirstateMap in `O(F × D)` operations, since each node has its own HashMap containing its child nodes. This slower costs ~140ms on an old snapshot of mozilla-central, and ~80ms on an old snapshot of the Netbeans repository. The status algorithm is faster, but with `-mard` (when not listing unknown files) it is typically not faster *enough* to compensate the slower parsing. Both Rust implementations are always faster than the Python + C implementation # Benchmark results All benchmarks are run on changeset 98c0408324e6, with repositories that use the dirstate-v1 file format, on a server with 4 CPU cores and 4 CPU threads (no HyperThreading). `hg status` benchmarks show wall clock times of the entire command as the average and standard deviation of serveral runs, collected by https://github.com/sharkdp/hyperfine and reformated. Parsing benchmarks are wall clock time of the Rust function that converts a bytes buffer of the dirstate file into the `DirstateMap` data structure as used by the status algorithm. A single run each, collected by running `hg status` this environment variable: RUST_LOG=hg::dirstate::dirstate_map=trace,hg::dirstate_tree::dirstate_map=trace Benchmark 1: Rust flat DirstateMap → Rust tree DirstateMap hg status mozilla-clean 562.3 ms ± 2.0 ms → 462.5 ms ± 0.6 ms 1.22 ± 0.00 times faster mozilla-dirty 859.6 ms ± 2.2 ms → 719.5 ms ± 3.2 ms 1.19 ± 0.01 times faster mozilla-ignored 558.2 ms ± 3.0 ms → 457.9 ms ± 2.9 ms 1.22 ± 0.01 times faster mozilla-unknowns 859.4 ms ± 5.7 ms → 716.0 ms ± 4.7 ms 1.20 ± 0.01 times faster netbeans-clean 336.5 ms ± 0.9 ms → 339.5 ms ± 0.4 ms 0.99 ± 0.00 times faster netbeans-dirty 491.4 ms ± 1.6 ms → 475.1 ms ± 1.2 ms 1.03 ± 0.00 times faster netbeans-ignored 343.7 ms ± 1.0 ms → 347.8 ms ± 0.4 ms 0.99 ± 0.00 times faster netbeans-unknowns 484.3 ms ± 1.0 ms → 466.0 ms ± 1.2 ms 1.04 ± 0.00 times faster hg status -mard mozilla-clean 317.3 ms ± 0.6 ms → 422.5 ms ± 1.2 ms 0.75 ± 0.00 times faster mozilla-dirty 315.4 ms ± 0.6 ms → 417.7 ms ± 1.1 ms 0.76 ± 0.00 times faster mozilla-ignored 314.6 ms ± 0.6 ms → 417.4 ms ± 1.0 ms 0.75 ± 0.00 times faster mozilla-unknowns 312.9 ms ± 0.9 ms → 417.3 ms ± 1.6 ms 0.75 ± 0.00 times faster netbeans-clean 212.0 ms ± 0.6 ms → 283.6 ms ± 0.8 ms 0.75 ± 0.00 times faster netbeans-dirty 211.4 ms ± 1.0 ms → 283.4 ms ± 1.6 ms 0.75 ± 0.01 times faster netbeans-ignored 211.4 ms ± 0.9 ms → 283.9 ms ± 0.8 ms 0.74 ± 0.01 times faster netbeans-unknowns 211.1 ms ± 0.6 ms → 283.4 ms ± 1.0 ms 0.74 ± 0.00 times faster Parsing mozilla-clean 38.4ms → 177.6ms mozilla-dirty 38.8ms → 177.0ms mozilla-ignored 38.8ms → 178.0ms mozilla-unknowns 38.7ms → 176.9ms netbeans-clean 16.5ms → 97.3ms netbeans-dirty 16.5ms → 98.4ms netbeans-ignored 16.9ms → 97.4ms netbeans-unknowns 16.9ms → 96.3ms Benchmark 2: Python + C dirstatemap → Rust tree DirstateMap hg status mozilla-clean 1261.0 ms ± 3.6 ms → 461.1 ms ± 0.5 ms 2.73 ± 0.00 times faster mozilla-dirty 2293.4 ms ± 9.1 ms → 719.6 ms ± 3.6 ms 3.19 ± 0.01 times faster mozilla-ignored 1240.4 ms ± 2.3 ms → 457.7 ms ± 1.9 ms 2.71 ± 0.00 times faster mozilla-unknowns 2283.3 ms ± 9.0 ms → 719.7 ms ± 3.8 ms 3.17 ± 0.01 times faster netbeans-clean 879.7 ms ± 3.5 ms → 339.9 ms ± 0.5 ms 2.59 ± 0.00 times faster netbeans-dirty 1257.3 ms ± 4.7 ms → 474.6 ms ± 1.6 ms 2.65 ± 0.01 times faster netbeans-ignored 943.9 ms ± 1.9 ms → 347.3 ms ± 1.1 ms 2.72 ± 0.00 times faster netbeans-unknowns 1188.1 ms ± 5.0 ms → 465.2 ms ± 2.3 ms 2.55 ± 0.01 times faster hg status -mard mozilla-clean 903.2 ms ± 3.6 ms → 423.4 ms ± 2.2 ms 2.13 ± 0.01 times faster mozilla-dirty 884.6 ms ± 4.5 ms → 417.3 ms ± 1.4 ms 2.12 ± 0.01 times faster mozilla-ignored 881.9 ms ± 1.3 ms → 417.3 ms ± 0.8 ms 2.11 ± 0.00 times faster mozilla-unknowns 878.5 ms ± 1.9 ms → 416.4 ms ± 0.9 ms 2.11 ± 0.00 times faster netbeans-clean 434.9 ms ± 1.8 ms → 284.0 ms ± 0.8 ms 1.53 ± 0.01 times faster netbeans-dirty 434.1 ms ± 0.8 ms → 283.1 ms ± 0.8 ms 1.53 ± 0.00 times faster netbeans-ignored 431.7 ms ± 1.1 ms → 283.6 ms ± 1.8 ms 1.52 ± 0.01 times faster netbeans-unknowns 433.0 ms ± 1.3 ms → 283.5 ms ± 0.7 ms 1.53 ± 0.00 times faster Differential Revision: https://phab.mercurial-scm.org/D11516

File last commit:

r46174:b68b1910 default
r48882:bf8837e3 default
Show More
patch.rs
369 lines | 11.8 KiB | application/rls-services+xml | RustLexer
use byteorder::{BigEndian, ByteOrder};
/// A chunk of data to insert, delete or replace in a patch
///
/// A chunk is:
/// - an insertion when `!data.is_empty() && start == end`
/// - an deletion when `data.is_empty() && start < end`
/// - a replacement when `!data.is_empty() && start < end`
/// - not doing anything when `data.is_empty() && start == end`
#[derive(Debug, Clone)]
struct Chunk<'a> {
/// The start position of the chunk of data to replace
start: u32,
/// The end position of the chunk of data to replace (open end interval)
end: u32,
/// The data replacing the chunk
data: &'a [u8],
}
impl Chunk<'_> {
/// Adjusted start of the chunk to replace.
///
/// The offset, taking into account the growth/shrinkage of data
/// induced by previously applied chunks.
fn start_offset_by(&self, offset: i32) -> u32 {
let start = self.start as i32 + offset;
assert!(start >= 0, "negative chunk start should never happen");
start as u32
}
/// Adjusted end of the chunk to replace.
///
/// The offset, taking into account the growth/shrinkage of data
/// induced by previously applied chunks.
fn end_offset_by(&self, offset: i32) -> u32 {
self.start_offset_by(offset) + self.data.len() as u32
}
/// Length of the replaced chunk.
fn replaced_len(&self) -> u32 {
self.end - self.start
}
/// Length difference between the replacing data and the replaced data.
fn len_diff(&self) -> i32 {
self.data.len() as i32 - self.replaced_len() as i32
}
}
/// The delta between two revisions data.
#[derive(Debug, Clone)]
pub struct PatchList<'a> {
/// A collection of chunks to apply.
///
/// Those chunks are:
/// - ordered from the left-most replacement to the right-most replacement
/// - non-overlapping, meaning that two chucks can not change the same
/// chunk of the patched data
chunks: Vec<Chunk<'a>>,
}
impl<'a> PatchList<'a> {
/// Create a `PatchList` from bytes.
pub fn new(data: &'a [u8]) -> Self {
let mut chunks = vec![];
let mut data = data;
while !data.is_empty() {
let start = BigEndian::read_u32(&data[0..]);
let end = BigEndian::read_u32(&data[4..]);
let len = BigEndian::read_u32(&data[8..]);
assert!(start <= end);
chunks.push(Chunk {
start,
end,
data: &data[12..12 + (len as usize)],
});
data = &data[12 + (len as usize)..];
}
PatchList { chunks }
}
/// Return the final length of data after patching
/// given its initial length .
fn size(&self, initial_size: i32) -> i32 {
self.chunks
.iter()
.fold(initial_size, |acc, chunk| acc + chunk.len_diff())
}
/// Apply the patch to some data.
pub fn apply(&self, initial: &[u8]) -> Vec<u8> {
let mut last: usize = 0;
let mut vec =
Vec::with_capacity(self.size(initial.len() as i32) as usize);
for Chunk { start, end, data } in self.chunks.iter() {
vec.extend(&initial[last..(*start as usize)]);
vec.extend(data.iter());
last = *end as usize;
}
vec.extend(&initial[last..]);
vec
}
/// Combine two patch lists into a single patch list.
///
/// Applying consecutive patches can lead to waste of time and memory
/// as the changes introduced by one patch can be overridden by the next.
/// Combining patches optimizes the whole patching sequence.
fn combine(&mut self, other: &mut Self) -> Self {
let mut chunks = vec![];
// Keep track of each growth/shrinkage resulting from applying a chunk
// in order to adjust the start/end of subsequent chunks.
let mut offset = 0i32;
// Keep track of the chunk of self.chunks to process.
let mut pos = 0;
// For each chunk of `other`, chunks of `self` are processed
// until they start after the end of the current chunk.
for Chunk { start, end, data } in other.chunks.iter() {
// Add chunks of `self` that start before this chunk of `other`
// without overlap.
while pos < self.chunks.len()
&& self.chunks[pos].end_offset_by(offset) <= *start
{
let first = self.chunks[pos].clone();
offset += first.len_diff();
chunks.push(first);
pos += 1;
}
// The current chunk of `self` starts before this chunk of `other`
// with overlap.
// The left-most part of data is added as an insertion chunk.
// The right-most part data is kept in the chunk.
if pos < self.chunks.len()
&& self.chunks[pos].start_offset_by(offset) < *start
{
let first = &mut self.chunks[pos];
let (data_left, data_right) = first.data.split_at(
(*start - first.start_offset_by(offset)) as usize,
);
let left = Chunk {
start: first.start,
end: first.start,
data: data_left,
};
first.data = data_right;
offset += left.len_diff();
chunks.push(left);
// There is no index incrementation because the right-most part
// needs further examination.
}
// At this point remaining chunks of `self` starts after
// the current chunk of `other`.
// `start_offset` will be used to adjust the start of the current
// chunk of `other`.
// Offset tracking continues with `end_offset` to adjust the end
// of the current chunk of `other`.
let mut next_offset = offset;
// Discard the chunks of `self` that are totally overridden
// by the current chunk of `other`
while pos < self.chunks.len()
&& self.chunks[pos].end_offset_by(next_offset) <= *end
{
let first = &self.chunks[pos];
next_offset += first.len_diff();
pos += 1;
}
// Truncate the left-most part of chunk of `self` that overlaps
// the current chunk of `other`.
if pos < self.chunks.len()
&& self.chunks[pos].start_offset_by(next_offset) < *end
{
let first = &mut self.chunks[pos];
let how_much_to_discard =
*end - first.start_offset_by(next_offset);
first.data = &first.data[(how_much_to_discard as usize)..];
next_offset += how_much_to_discard as i32;
}
// Add the chunk of `other` with adjusted position.
chunks.push(Chunk {
start: (*start as i32 - offset) as u32,
end: (*end as i32 - next_offset) as u32,
data,
});
// Go back to normal offset tracking for the next `o` chunk
offset = next_offset;
}
// Add remaining chunks of `self`.
for elt in &self.chunks[pos..] {
chunks.push(elt.clone());
}
PatchList { chunks }
}
}
/// Combine a list of patch list into a single patch optimized patch list.
pub fn fold_patch_lists<'a>(lists: &[PatchList<'a>]) -> PatchList<'a> {
if lists.len() <= 1 {
if lists.is_empty() {
PatchList { chunks: vec![] }
} else {
lists[0].clone()
}
} else {
let (left, right) = lists.split_at(lists.len() / 2);
let mut left_res = fold_patch_lists(left);
let mut right_res = fold_patch_lists(right);
left_res.combine(&mut right_res)
}
}
#[cfg(test)]
mod tests {
use super::*;
struct PatchDataBuilder {
data: Vec<u8>,
}
impl PatchDataBuilder {
pub fn new() -> Self {
Self { data: vec![] }
}
pub fn replace(
&mut self,
start: usize,
end: usize,
data: &[u8],
) -> &mut Self {
assert!(start <= end);
self.data.extend(&(start as i32).to_be_bytes());
self.data.extend(&(end as i32).to_be_bytes());
self.data.extend(&(data.len() as i32).to_be_bytes());
self.data.extend(data.iter());
self
}
pub fn get(&mut self) -> &[u8] {
&self.data
}
}
#[test]
fn test_ends_before() {
let data = vec![0u8, 0u8, 0u8];
let mut patch1_data = PatchDataBuilder::new();
patch1_data.replace(0, 1, &[1, 2]);
let mut patch1 = PatchList::new(patch1_data.get());
let mut patch2_data = PatchDataBuilder::new();
patch2_data.replace(2, 4, &[3, 4]);
let mut patch2 = PatchList::new(patch2_data.get());
let patch = patch1.combine(&mut patch2);
let result = patch.apply(&data);
assert_eq!(result, vec![1u8, 2, 3, 4]);
}
#[test]
fn test_starts_after() {
let data = vec![0u8, 0u8, 0u8];
let mut patch1_data = PatchDataBuilder::new();
patch1_data.replace(2, 3, &[3]);
let mut patch1 = PatchList::new(patch1_data.get());
let mut patch2_data = PatchDataBuilder::new();
patch2_data.replace(1, 2, &[1, 2]);
let mut patch2 = PatchList::new(patch2_data.get());
let patch = patch1.combine(&mut patch2);
let result = patch.apply(&data);
assert_eq!(result, vec![0u8, 1, 2, 3]);
}
#[test]
fn test_overridden() {
let data = vec![0u8, 0, 0];
let mut patch1_data = PatchDataBuilder::new();
patch1_data.replace(1, 2, &[3, 4]);
let mut patch1 = PatchList::new(patch1_data.get());
let mut patch2_data = PatchDataBuilder::new();
patch2_data.replace(1, 4, &[1, 2, 3]);
let mut patch2 = PatchList::new(patch2_data.get());
let patch = patch1.combine(&mut patch2);
let result = patch.apply(&data);
assert_eq!(result, vec![0u8, 1, 2, 3]);
}
#[test]
fn test_right_most_part_is_overridden() {
let data = vec![0u8, 0, 0];
let mut patch1_data = PatchDataBuilder::new();
patch1_data.replace(0, 1, &[1, 3]);
let mut patch1 = PatchList::new(patch1_data.get());
let mut patch2_data = PatchDataBuilder::new();
patch2_data.replace(1, 4, &[2, 3, 4]);
let mut patch2 = PatchList::new(patch2_data.get());
let patch = patch1.combine(&mut patch2);
let result = patch.apply(&data);
assert_eq!(result, vec![1u8, 2, 3, 4]);
}
#[test]
fn test_left_most_part_is_overridden() {
let data = vec![0u8, 0, 0];
let mut patch1_data = PatchDataBuilder::new();
patch1_data.replace(1, 3, &[1, 3, 4]);
let mut patch1 = PatchList::new(patch1_data.get());
let mut patch2_data = PatchDataBuilder::new();
patch2_data.replace(0, 2, &[1, 2]);
let mut patch2 = PatchList::new(patch2_data.get());
let patch = patch1.combine(&mut patch2);
let result = patch.apply(&data);
assert_eq!(result, vec![1u8, 2, 3, 4]);
}
#[test]
fn test_mid_is_overridden() {
let data = vec![0u8, 0, 0];
let mut patch1_data = PatchDataBuilder::new();
patch1_data.replace(0, 3, &[1, 3, 3, 4]);
let mut patch1 = PatchList::new(patch1_data.get());
let mut patch2_data = PatchDataBuilder::new();
patch2_data.replace(1, 3, &[2, 3]);
let mut patch2 = PatchList::new(patch2_data.get());
let patch = patch1.combine(&mut patch2);
let result = patch.apply(&data);
assert_eq!(result, vec![1u8, 2, 3, 4]);
}
}