##// END OF EJS Templates
rust: use `logging_timer` instead of `micro_timer`...
rust: use `logging_timer` instead of `micro_timer` I am the author of `micro_timer`. I built it at the time because I couldn't find a crate that was simple to use and flexible to do function timing with. Turns out I just couldn't find it because crates.io's search isn't all that great, or maybe I didn't look hard enough. `logging_timer` is better in every way: - supports changing the logging level - supports start and end logging - supports intermediary messages - supports inline macros - supports formatting the output - better IDE/tree-sitter integration thanks to a more robust proc macro I also changed all uses to one-liners, so it's easier to copy-paste.

File last commit:

r50808:c15b415d default
r50808:c15b415d default
Show More
dirstate_map.rs
1906 lines | 64.5 KiB | application/rls-services+xml | RustLexer
use bytes_cast::BytesCast;
use std::borrow::Cow;
use std::path::PathBuf;
use super::on_disk;
use super::on_disk::DirstateV2ParseError;
use super::owning::OwningDirstateMap;
use super::path_with_basename::WithBasename;
use crate::dirstate::parsers::pack_entry;
use crate::dirstate::parsers::packed_entry_size;
use crate::dirstate::parsers::parse_dirstate_entries;
use crate::dirstate::CopyMapIter;
use crate::dirstate::DirstateV2Data;
use crate::dirstate::ParentFileData;
use crate::dirstate::StateMapIter;
use crate::dirstate::TruncatedTimestamp;
use crate::matchers::Matcher;
use crate::utils::hg_path::{HgPath, HgPathBuf};
use crate::DirstateEntry;
use crate::DirstateError;
use crate::DirstateMapError;
use crate::DirstateParents;
use crate::DirstateStatus;
use crate::FastHashbrownMap as FastHashMap;
use crate::PatternFileWarning;
use crate::StatusError;
use crate::StatusOptions;
/// Append to an existing data file if the amount of unreachable data (not used
/// anymore) is less than this fraction of the total amount of existing data.
const ACCEPTABLE_UNREACHABLE_BYTES_RATIO: f32 = 0.5;
#[derive(Debug, PartialEq, Eq)]
/// Version of the on-disk format
pub enum DirstateVersion {
V1,
V2,
}
#[derive(Debug)]
pub struct DirstateMap<'on_disk> {
/// Contents of the `.hg/dirstate` file
pub(super) on_disk: &'on_disk [u8],
pub(super) root: ChildNodes<'on_disk>,
/// Number of nodes anywhere in the tree that have `.entry.is_some()`.
pub(super) nodes_with_entry_count: u32,
/// Number of nodes anywhere in the tree that have
/// `.copy_source.is_some()`.
pub(super) nodes_with_copy_source_count: u32,
/// See on_disk::Header
pub(super) ignore_patterns_hash: on_disk::IgnorePatternsHash,
/// How many bytes of `on_disk` are not used anymore
pub(super) unreachable_bytes: u32,
/// Size of the data used to first load this `DirstateMap`. Used in case
/// we need to write some new metadata, but no new data on disk.
pub(super) old_data_size: usize,
pub(super) dirstate_version: DirstateVersion,
}
/// Using a plain `HgPathBuf` of the full path from the repository root as a
/// map key would also work: all paths in a given map have the same parent
/// path, so comparing full paths gives the same result as comparing base
/// names. However `HashMap` would waste time always re-hashing the same
/// string prefix.
pub(super) type NodeKey<'on_disk> = WithBasename<Cow<'on_disk, HgPath>>;
/// Similar to `&'tree Cow<'on_disk, HgPath>`, but can also be returned
/// for on-disk nodes that don’t actually have a `Cow` to borrow.
#[derive(Debug)]
pub(super) enum BorrowedPath<'tree, 'on_disk> {
InMemory(&'tree HgPathBuf),
OnDisk(&'on_disk HgPath),
}
#[derive(Debug)]
pub(super) enum ChildNodes<'on_disk> {
InMemory(FastHashMap<NodeKey<'on_disk>, Node<'on_disk>>),
OnDisk(&'on_disk [on_disk::Node]),
}
#[derive(Debug)]
pub(super) enum ChildNodesRef<'tree, 'on_disk> {
InMemory(&'tree FastHashMap<NodeKey<'on_disk>, Node<'on_disk>>),
OnDisk(&'on_disk [on_disk::Node]),
}
#[derive(Debug)]
pub(super) enum NodeRef<'tree, 'on_disk> {
InMemory(&'tree NodeKey<'on_disk>, &'tree Node<'on_disk>),
OnDisk(&'on_disk on_disk::Node),
}
impl<'tree, 'on_disk> BorrowedPath<'tree, 'on_disk> {
pub fn detach_from_tree(&self) -> Cow<'on_disk, HgPath> {
match *self {
BorrowedPath::InMemory(in_memory) => Cow::Owned(in_memory.clone()),
BorrowedPath::OnDisk(on_disk) => Cow::Borrowed(on_disk),
}
}
}
impl<'tree, 'on_disk> std::ops::Deref for BorrowedPath<'tree, 'on_disk> {
type Target = HgPath;
fn deref(&self) -> &HgPath {
match *self {
BorrowedPath::InMemory(in_memory) => in_memory,
BorrowedPath::OnDisk(on_disk) => on_disk,
}
}
}
impl Default for ChildNodes<'_> {
fn default() -> Self {
ChildNodes::InMemory(Default::default())
}
}
impl<'on_disk> ChildNodes<'on_disk> {
pub(super) fn as_ref<'tree>(
&'tree self,
) -> ChildNodesRef<'tree, 'on_disk> {
match self {
ChildNodes::InMemory(nodes) => ChildNodesRef::InMemory(nodes),
ChildNodes::OnDisk(nodes) => ChildNodesRef::OnDisk(nodes),
}
}
pub(super) fn is_empty(&self) -> bool {
match self {
ChildNodes::InMemory(nodes) => nodes.is_empty(),
ChildNodes::OnDisk(nodes) => nodes.is_empty(),
}
}
fn make_mut(
&mut self,
on_disk: &'on_disk [u8],
unreachable_bytes: &mut u32,
) -> Result<
&mut FastHashMap<NodeKey<'on_disk>, Node<'on_disk>>,
DirstateV2ParseError,
> {
match self {
ChildNodes::InMemory(nodes) => Ok(nodes),
ChildNodes::OnDisk(nodes) => {
*unreachable_bytes +=
std::mem::size_of_val::<[on_disk::Node]>(nodes) as u32;
let nodes = nodes
.iter()
.map(|node| {
Ok((
node.path(on_disk)?,
node.to_in_memory_node(on_disk)?,
))
})
.collect::<Result<_, _>>()?;
*self = ChildNodes::InMemory(nodes);
match self {
ChildNodes::InMemory(nodes) => Ok(nodes),
ChildNodes::OnDisk(_) => unreachable!(),
}
}
}
}
}
impl<'tree, 'on_disk> ChildNodesRef<'tree, 'on_disk> {
pub(super) fn get(
&self,
base_name: &HgPath,
on_disk: &'on_disk [u8],
) -> Result<Option<NodeRef<'tree, 'on_disk>>, DirstateV2ParseError> {
match self {
ChildNodesRef::InMemory(nodes) => Ok(nodes
.get_key_value(base_name)
.map(|(k, v)| NodeRef::InMemory(k, v))),
ChildNodesRef::OnDisk(nodes) => {
let mut parse_result = Ok(());
let search_result = nodes.binary_search_by(|node| {
match node.base_name(on_disk) {
Ok(node_base_name) => node_base_name.cmp(base_name),
Err(e) => {
parse_result = Err(e);
// Dummy comparison result, `search_result` won’t
// be used since `parse_result` is an error
std::cmp::Ordering::Equal
}
}
});
parse_result.map(|()| {
search_result.ok().map(|i| NodeRef::OnDisk(&nodes[i]))
})
}
}
}
/// Iterate in undefined order
pub(super) fn iter(
&self,
) -> impl Iterator<Item = NodeRef<'tree, 'on_disk>> {
match self {
ChildNodesRef::InMemory(nodes) => itertools::Either::Left(
nodes.iter().map(|(k, v)| NodeRef::InMemory(k, v)),
),
ChildNodesRef::OnDisk(nodes) => {
itertools::Either::Right(nodes.iter().map(NodeRef::OnDisk))
}
}
}
/// Iterate in parallel in undefined order
pub(super) fn par_iter(
&self,
) -> impl rayon::iter::ParallelIterator<Item = NodeRef<'tree, 'on_disk>>
{
use rayon::prelude::*;
match self {
ChildNodesRef::InMemory(nodes) => rayon::iter::Either::Left(
nodes.par_iter().map(|(k, v)| NodeRef::InMemory(k, v)),
),
ChildNodesRef::OnDisk(nodes) => rayon::iter::Either::Right(
nodes.par_iter().map(NodeRef::OnDisk),
),
}
}
pub(super) fn sorted(&self) -> Vec<NodeRef<'tree, 'on_disk>> {
match self {
ChildNodesRef::InMemory(nodes) => {
let mut vec: Vec<_> = nodes
.iter()
.map(|(k, v)| NodeRef::InMemory(k, v))
.collect();
fn sort_key<'a>(node: &'a NodeRef) -> &'a HgPath {
match node {
NodeRef::InMemory(path, _node) => path.base_name(),
NodeRef::OnDisk(_) => unreachable!(),
}
}
// `sort_unstable_by_key` doesn’t allow keys borrowing from the
// value: https://github.com/rust-lang/rust/issues/34162
vec.sort_unstable_by(|a, b| sort_key(a).cmp(sort_key(b)));
vec
}
ChildNodesRef::OnDisk(nodes) => {
// Nodes on disk are already sorted
nodes.iter().map(NodeRef::OnDisk).collect()
}
}
}
}
impl<'tree, 'on_disk> NodeRef<'tree, 'on_disk> {
pub(super) fn full_path(
&self,
on_disk: &'on_disk [u8],
) -> Result<&'tree HgPath, DirstateV2ParseError> {
match self {
NodeRef::InMemory(path, _node) => Ok(path.full_path()),
NodeRef::OnDisk(node) => node.full_path(on_disk),
}
}
/// Returns a `BorrowedPath`, which can be turned into a `Cow<'on_disk,
/// HgPath>` detached from `'tree`
pub(super) fn full_path_borrowed(
&self,
on_disk: &'on_disk [u8],
) -> Result<BorrowedPath<'tree, 'on_disk>, DirstateV2ParseError> {
match self {
NodeRef::InMemory(path, _node) => match path.full_path() {
Cow::Borrowed(on_disk) => Ok(BorrowedPath::OnDisk(on_disk)),
Cow::Owned(in_memory) => Ok(BorrowedPath::InMemory(in_memory)),
},
NodeRef::OnDisk(node) => {
Ok(BorrowedPath::OnDisk(node.full_path(on_disk)?))
}
}
}
pub(super) fn base_name(
&self,
on_disk: &'on_disk [u8],
) -> Result<&'tree HgPath, DirstateV2ParseError> {
match self {
NodeRef::InMemory(path, _node) => Ok(path.base_name()),
NodeRef::OnDisk(node) => node.base_name(on_disk),
}
}
pub(super) fn children(
&self,
on_disk: &'on_disk [u8],
) -> Result<ChildNodesRef<'tree, 'on_disk>, DirstateV2ParseError> {
match self {
NodeRef::InMemory(_path, node) => Ok(node.children.as_ref()),
NodeRef::OnDisk(node) => {
Ok(ChildNodesRef::OnDisk(node.children(on_disk)?))
}
}
}
pub(super) fn has_copy_source(&self) -> bool {
match self {
NodeRef::InMemory(_path, node) => node.copy_source.is_some(),
NodeRef::OnDisk(node) => node.has_copy_source(),
}
}
pub(super) fn copy_source(
&self,
on_disk: &'on_disk [u8],
) -> Result<Option<&'tree HgPath>, DirstateV2ParseError> {
match self {
NodeRef::InMemory(_path, node) => {
Ok(node.copy_source.as_ref().map(|s| &**s))
}
NodeRef::OnDisk(node) => node.copy_source(on_disk),
}
}
/// Returns a `BorrowedPath`, which can be turned into a `Cow<'on_disk,
/// HgPath>` detached from `'tree`
pub(super) fn copy_source_borrowed(
&self,
on_disk: &'on_disk [u8],
) -> Result<Option<BorrowedPath<'tree, 'on_disk>>, DirstateV2ParseError>
{
Ok(match self {
NodeRef::InMemory(_path, node) => {
node.copy_source.as_ref().map(|source| match source {
Cow::Borrowed(on_disk) => BorrowedPath::OnDisk(on_disk),
Cow::Owned(in_memory) => BorrowedPath::InMemory(in_memory),
})
}
NodeRef::OnDisk(node) => node
.copy_source(on_disk)?
.map(|source| BorrowedPath::OnDisk(source)),
})
}
pub(super) fn entry(
&self,
) -> Result<Option<DirstateEntry>, DirstateV2ParseError> {
match self {
NodeRef::InMemory(_path, node) => {
Ok(node.data.as_entry().copied())
}
NodeRef::OnDisk(node) => node.entry(),
}
}
pub(super) fn cached_directory_mtime(
&self,
) -> Result<Option<TruncatedTimestamp>, DirstateV2ParseError> {
match self {
NodeRef::InMemory(_path, node) => Ok(match node.data {
NodeData::CachedDirectory { mtime } => Some(mtime),
_ => None,
}),
NodeRef::OnDisk(node) => node.cached_directory_mtime(),
}
}
pub(super) fn descendants_with_entry_count(&self) -> u32 {
match self {
NodeRef::InMemory(_path, node) => {
node.descendants_with_entry_count
}
NodeRef::OnDisk(node) => node.descendants_with_entry_count.get(),
}
}
pub(super) fn tracked_descendants_count(&self) -> u32 {
match self {
NodeRef::InMemory(_path, node) => node.tracked_descendants_count,
NodeRef::OnDisk(node) => node.tracked_descendants_count.get(),
}
}
}
/// Represents a file or a directory
#[derive(Default, Debug)]
pub(super) struct Node<'on_disk> {
pub(super) data: NodeData,
pub(super) copy_source: Option<Cow<'on_disk, HgPath>>,
pub(super) children: ChildNodes<'on_disk>,
/// How many (non-inclusive) descendants of this node have an entry.
pub(super) descendants_with_entry_count: u32,
/// How many (non-inclusive) descendants of this node have an entry whose
/// state is "tracked".
pub(super) tracked_descendants_count: u32,
}
#[derive(Debug)]
pub(super) enum NodeData {
Entry(DirstateEntry),
CachedDirectory { mtime: TruncatedTimestamp },
None,
}
impl Default for NodeData {
fn default() -> Self {
NodeData::None
}
}
impl NodeData {
fn has_entry(&self) -> bool {
match self {
NodeData::Entry(_) => true,
_ => false,
}
}
fn as_entry(&self) -> Option<&DirstateEntry> {
match self {
NodeData::Entry(entry) => Some(entry),
_ => None,
}
}
fn as_entry_mut(&mut self) -> Option<&mut DirstateEntry> {
match self {
NodeData::Entry(entry) => Some(entry),
_ => None,
}
}
}
impl<'on_disk> DirstateMap<'on_disk> {
pub(super) fn empty(on_disk: &'on_disk [u8]) -> Self {
Self {
on_disk,
root: ChildNodes::default(),
nodes_with_entry_count: 0,
nodes_with_copy_source_count: 0,
ignore_patterns_hash: [0; on_disk::IGNORE_PATTERNS_HASH_LEN],
unreachable_bytes: 0,
old_data_size: 0,
dirstate_version: DirstateVersion::V1,
}
}
#[logging_timer::time("trace")]
pub fn new_v2(
on_disk: &'on_disk [u8],
data_size: usize,
metadata: &[u8],
) -> Result<Self, DirstateError> {
if let Some(data) = on_disk.get(..data_size) {
Ok(on_disk::read(data, metadata)?)
} else {
Err(DirstateV2ParseError::new("not enough bytes on disk").into())
}
}
#[logging_timer::time("trace")]
pub fn new_v1(
on_disk: &'on_disk [u8],
) -> Result<(Self, Option<DirstateParents>), DirstateError> {
let mut map = Self::empty(on_disk);
if map.on_disk.is_empty() {
return Ok((map, None));
}
let parents = parse_dirstate_entries(
map.on_disk,
|path, entry, copy_source| {
let tracked = entry.tracked();
let node = Self::get_or_insert_node_inner(
map.on_disk,
&mut map.unreachable_bytes,
&mut map.root,
path,
WithBasename::to_cow_borrowed,
|ancestor| {
if tracked {
ancestor.tracked_descendants_count += 1
}
ancestor.descendants_with_entry_count += 1
},
)?;
assert!(
!node.data.has_entry(),
"duplicate dirstate entry in read"
);
assert!(
node.copy_source.is_none(),
"duplicate dirstate entry in read"
);
node.data = NodeData::Entry(*entry);
node.copy_source = copy_source.map(Cow::Borrowed);
map.nodes_with_entry_count += 1;
if copy_source.is_some() {
map.nodes_with_copy_source_count += 1
}
Ok(())
},
)?;
let parents = Some(parents.clone());
Ok((map, parents))
}
/// Assuming dirstate-v2 format, returns whether the next write should
/// append to the existing data file that contains `self.on_disk` (true),
/// or create a new data file from scratch (false).
pub(super) fn write_should_append(&self) -> bool {
let ratio = self.unreachable_bytes as f32 / self.on_disk.len() as f32;
ratio < ACCEPTABLE_UNREACHABLE_BYTES_RATIO
}
fn get_node<'tree>(
&'tree self,
path: &HgPath,
) -> Result<Option<NodeRef<'tree, 'on_disk>>, DirstateV2ParseError> {
let mut children = self.root.as_ref();
let mut components = path.components();
let mut component =
components.next().expect("expected at least one components");
loop {
if let Some(child) = children.get(component, self.on_disk)? {
if let Some(next_component) = components.next() {
component = next_component;
children = child.children(self.on_disk)?;
} else {
return Ok(Some(child));
}
} else {
return Ok(None);
}
}
}
/// Returns a mutable reference to the node at `path` if it exists
///
/// `each_ancestor` is a callback that is called for each ancestor node
/// when descending the tree. It is used to keep the different counters
/// of the `DirstateMap` up-to-date.
fn get_node_mut<'tree>(
&'tree mut self,
path: &HgPath,
each_ancestor: impl FnMut(&mut Node),
) -> Result<Option<&'tree mut Node<'on_disk>>, DirstateV2ParseError> {
Self::get_node_mut_inner(
self.on_disk,
&mut self.unreachable_bytes,
&mut self.root,
path,
each_ancestor,
)
}
/// Lower-level version of `get_node_mut`.
///
/// This takes `root` instead of `&mut self` so that callers can mutate
/// other fields while the returned borrow is still valid.
///
/// `each_ancestor` is a callback that is called for each ancestor node
/// when descending the tree. It is used to keep the different counters
/// of the `DirstateMap` up-to-date.
fn get_node_mut_inner<'tree>(
on_disk: &'on_disk [u8],
unreachable_bytes: &mut u32,
root: &'tree mut ChildNodes<'on_disk>,
path: &HgPath,
mut each_ancestor: impl FnMut(&mut Node),
) -> Result<Option<&'tree mut Node<'on_disk>>, DirstateV2ParseError> {
let mut children = root;
let mut components = path.components();
let mut component =
components.next().expect("expected at least one components");
loop {
if let Some(child) = children
.make_mut(on_disk, unreachable_bytes)?
.get_mut(component)
{
if let Some(next_component) = components.next() {
each_ancestor(child);
component = next_component;
children = &mut child.children;
} else {
return Ok(Some(child));
}
} else {
return Ok(None);
}
}
}
/// Get a mutable reference to the node at `path`, creating it if it does
/// not exist.
///
/// `each_ancestor` is a callback that is called for each ancestor node
/// when descending the tree. It is used to keep the different counters
/// of the `DirstateMap` up-to-date.
fn get_or_insert_node<'tree, 'path>(
&'tree mut self,
path: &'path HgPath,
each_ancestor: impl FnMut(&mut Node),
) -> Result<&'tree mut Node<'on_disk>, DirstateV2ParseError> {
Self::get_or_insert_node_inner(
self.on_disk,
&mut self.unreachable_bytes,
&mut self.root,
path,
WithBasename::to_cow_owned,
each_ancestor,
)
}
/// Lower-level version of `get_or_insert_node_inner`, which is used when
/// parsing disk data to remove allocations for new nodes.
fn get_or_insert_node_inner<'tree, 'path>(
on_disk: &'on_disk [u8],
unreachable_bytes: &mut u32,
root: &'tree mut ChildNodes<'on_disk>,
path: &'path HgPath,
to_cow: impl Fn(
WithBasename<&'path HgPath>,
) -> WithBasename<Cow<'on_disk, HgPath>>,
mut each_ancestor: impl FnMut(&mut Node),
) -> Result<&'tree mut Node<'on_disk>, DirstateV2ParseError> {
let mut child_nodes = root;
let mut inclusive_ancestor_paths =
WithBasename::inclusive_ancestors_of(path);
let mut ancestor_path = inclusive_ancestor_paths
.next()
.expect("expected at least one inclusive ancestor");
loop {
let (_, child_node) = child_nodes
.make_mut(on_disk, unreachable_bytes)?
.raw_entry_mut()
.from_key(ancestor_path.base_name())
.or_insert_with(|| (to_cow(ancestor_path), Node::default()));
if let Some(next) = inclusive_ancestor_paths.next() {
each_ancestor(child_node);
ancestor_path = next;
child_nodes = &mut child_node.children;
} else {
return Ok(child_node);
}
}
}
fn reset_state(
&mut self,
filename: &HgPath,
old_entry_opt: Option<DirstateEntry>,
wc_tracked: bool,
p1_tracked: bool,
p2_info: bool,
has_meaningful_mtime: bool,
parent_file_data_opt: Option<ParentFileData>,
) -> Result<(), DirstateError> {
let (had_entry, was_tracked) = match old_entry_opt {
Some(old_entry) => (true, old_entry.tracked()),
None => (false, false),
};
let node = self.get_or_insert_node(filename, |ancestor| {
if !had_entry {
ancestor.descendants_with_entry_count += 1;
}
if was_tracked {
if !wc_tracked {
ancestor.tracked_descendants_count = ancestor
.tracked_descendants_count
.checked_sub(1)
.expect("tracked count to be >= 0");
}
} else {
if wc_tracked {
ancestor.tracked_descendants_count += 1;
}
}
})?;
let v2_data = if let Some(parent_file_data) = parent_file_data_opt {
DirstateV2Data {
wc_tracked,
p1_tracked,
p2_info,
mode_size: parent_file_data.mode_size,
mtime: if has_meaningful_mtime {
parent_file_data.mtime
} else {
None
},
..Default::default()
}
} else {
DirstateV2Data {
wc_tracked,
p1_tracked,
p2_info,
..Default::default()
}
};
node.data = NodeData::Entry(DirstateEntry::from_v2_data(v2_data));
if !had_entry {
self.nodes_with_entry_count += 1;
}
Ok(())
}
fn set_tracked(
&mut self,
filename: &HgPath,
old_entry_opt: Option<DirstateEntry>,
) -> Result<bool, DirstateV2ParseError> {
let was_tracked = old_entry_opt.map_or(false, |e| e.tracked());
let had_entry = old_entry_opt.is_some();
let tracked_count_increment = if was_tracked { 0 } else { 1 };
let mut new = false;
let node = self.get_or_insert_node(filename, |ancestor| {
if !had_entry {
ancestor.descendants_with_entry_count += 1;
}
ancestor.tracked_descendants_count += tracked_count_increment;
})?;
if let Some(old_entry) = old_entry_opt {
let mut e = old_entry.clone();
if e.tracked() {
// XXX
// This is probably overkill for more case, but we need this to
// fully replace the `normallookup` call with `set_tracked`
// one. Consider smoothing this in the future.
e.set_possibly_dirty();
} else {
new = true;
e.set_tracked();
}
node.data = NodeData::Entry(e)
} else {
node.data = NodeData::Entry(DirstateEntry::new_tracked());
self.nodes_with_entry_count += 1;
new = true;
};
Ok(new)
}
/// Set a node as untracked in the dirstate.
///
/// It is the responsibility of the caller to remove the copy source and/or
/// the entry itself if appropriate.
///
/// # Panics
///
/// Panics if the node does not exist.
fn set_untracked(
&mut self,
filename: &HgPath,
old_entry: DirstateEntry,
) -> Result<(), DirstateV2ParseError> {
let node = self
.get_node_mut(filename, |ancestor| {
ancestor.tracked_descendants_count = ancestor
.tracked_descendants_count
.checked_sub(1)
.expect("tracked_descendants_count should be >= 0");
})?
.expect("node should exist");
let mut new_entry = old_entry.clone();
new_entry.set_untracked();
node.data = NodeData::Entry(new_entry);
Ok(())
}
/// Set a node as clean in the dirstate.
///
/// It is the responsibility of the caller to remove the copy source.
///
/// # Panics
///
/// Panics if the node does not exist.
fn set_clean(
&mut self,
filename: &HgPath,
old_entry: DirstateEntry,
mode: u32,
size: u32,
mtime: TruncatedTimestamp,
) -> Result<(), DirstateError> {
let node = self
.get_node_mut(filename, |ancestor| {
if !old_entry.tracked() {
ancestor.tracked_descendants_count += 1;
}
})?
.expect("node should exist");
let mut new_entry = old_entry.clone();
new_entry.set_clean(mode, size, mtime);
node.data = NodeData::Entry(new_entry);
Ok(())
}
/// Set a node as possibly dirty in the dirstate.
///
/// # Panics
///
/// Panics if the node does not exist.
fn set_possibly_dirty(
&mut self,
filename: &HgPath,
) -> Result<(), DirstateError> {
let node = self
.get_node_mut(filename, |_ancestor| {})?
.expect("node should exist");
let entry = node.data.as_entry_mut().expect("entry should exist");
entry.set_possibly_dirty();
node.data = NodeData::Entry(*entry);
Ok(())
}
/// Clears the cached mtime for the (potential) folder at `path`.
pub(super) fn clear_cached_mtime(
&mut self,
path: &HgPath,
) -> Result<(), DirstateV2ParseError> {
let node = match self.get_node_mut(path, |_ancestor| {})? {
Some(node) => node,
None => return Ok(()),
};
if let NodeData::CachedDirectory { .. } = &node.data {
node.data = NodeData::None
}
Ok(())
}
/// Sets the cached mtime for the (potential) folder at `path`.
pub(super) fn set_cached_mtime(
&mut self,
path: &HgPath,
mtime: TruncatedTimestamp,
) -> Result<(), DirstateV2ParseError> {
let node = match self.get_node_mut(path, |_ancestor| {})? {
Some(node) => node,
None => return Ok(()),
};
match &node.data {
NodeData::Entry(_) => {} // Don’t overwrite an entry
NodeData::CachedDirectory { .. } | NodeData::None => {
node.data = NodeData::CachedDirectory { mtime }
}
}
Ok(())
}
fn iter_nodes<'tree>(
&'tree self,
) -> impl Iterator<
Item = Result<NodeRef<'tree, 'on_disk>, DirstateV2ParseError>,
> + 'tree {
// Depth first tree traversal.
//
// If we could afford internal iteration and recursion,
// this would look like:
//
// ```
// fn traverse_children(
// children: &ChildNodes,
// each: &mut impl FnMut(&Node),
// ) {
// for child in children.values() {
// traverse_children(&child.children, each);
// each(child);
// }
// }
// ```
//
// However we want an external iterator and therefore can’t use the
// call stack. Use an explicit stack instead:
let mut stack = Vec::new();
let mut iter = self.root.as_ref().iter();
std::iter::from_fn(move || {
while let Some(child_node) = iter.next() {
let children = match child_node.children(self.on_disk) {
Ok(children) => children,
Err(error) => return Some(Err(error)),
};
// Pseudo-recursion
let new_iter = children.iter();
let old_iter = std::mem::replace(&mut iter, new_iter);
stack.push((child_node, old_iter));
}
// Found the end of a `children.iter()` iterator.
if let Some((child_node, next_iter)) = stack.pop() {
// "Return" from pseudo-recursion by restoring state from the
// explicit stack
iter = next_iter;
Some(Ok(child_node))
} else {
// Reached the bottom of the stack, we’re done
None
}
})
}
fn count_dropped_path(unreachable_bytes: &mut u32, path: &Cow<HgPath>) {
if let Cow::Borrowed(path) = path {
*unreachable_bytes += path.len() as u32
}
}
}
/// Like `Iterator::filter_map`, but over a fallible iterator of `Result`s.
///
/// The callback is only called for incoming `Ok` values. Errors are passed
/// through as-is. In order to let it use the `?` operator the callback is
/// expected to return a `Result` of `Option`, instead of an `Option` of
/// `Result`.
fn filter_map_results<'a, I, F, A, B, E>(
iter: I,
f: F,
) -> impl Iterator<Item = Result<B, E>> + 'a
where
I: Iterator<Item = Result<A, E>> + 'a,
F: Fn(A) -> Result<Option<B>, E> + 'a,
{
iter.filter_map(move |result| match result {
Ok(node) => f(node).transpose(),
Err(e) => Some(Err(e)),
})
}
impl OwningDirstateMap {
pub fn clear(&mut self) {
self.with_dmap_mut(|map| {
map.root = Default::default();
map.nodes_with_entry_count = 0;
map.nodes_with_copy_source_count = 0;
});
}
pub fn set_tracked(
&mut self,
filename: &HgPath,
) -> Result<bool, DirstateV2ParseError> {
let old_entry_opt = self.get(filename)?;
self.with_dmap_mut(|map| map.set_tracked(filename, old_entry_opt))
}
pub fn set_untracked(
&mut self,
filename: &HgPath,
) -> Result<bool, DirstateError> {
let old_entry_opt = self.get(filename)?;
match old_entry_opt {
None => Ok(false),
Some(old_entry) => {
if !old_entry.tracked() {
// `DirstateMap::set_untracked` is not a noop if
// already not tracked as it will decrement the
// tracked counters while going down.
return Ok(true);
}
if old_entry.added() {
// Untracking an "added" entry will just result in a
// worthless entry (and other parts of the code will
// complain about it), just drop it entirely.
self.drop_entry_and_copy_source(filename)?;
return Ok(true);
}
if !old_entry.p2_info() {
self.copy_map_remove(filename)?;
}
self.with_dmap_mut(|map| {
map.set_untracked(filename, old_entry)?;
Ok(true)
})
}
}
}
pub fn set_clean(
&mut self,
filename: &HgPath,
mode: u32,
size: u32,
mtime: TruncatedTimestamp,
) -> Result<(), DirstateError> {
let old_entry = match self.get(filename)? {
None => {
return Err(
DirstateMapError::PathNotFound(filename.into()).into()
)
}
Some(e) => e,
};
self.copy_map_remove(filename)?;
self.with_dmap_mut(|map| {
map.set_clean(filename, old_entry, mode, size, mtime)
})
}
pub fn set_possibly_dirty(
&mut self,
filename: &HgPath,
) -> Result<(), DirstateError> {
if self.get(filename)?.is_none() {
return Err(DirstateMapError::PathNotFound(filename.into()).into());
}
self.with_dmap_mut(|map| map.set_possibly_dirty(filename))
}
pub fn reset_state(
&mut self,
filename: &HgPath,
wc_tracked: bool,
p1_tracked: bool,
p2_info: bool,
has_meaningful_mtime: bool,
parent_file_data_opt: Option<ParentFileData>,
) -> Result<(), DirstateError> {
if !(p1_tracked || p2_info || wc_tracked) {
self.drop_entry_and_copy_source(filename)?;
return Ok(());
}
self.copy_map_remove(filename)?;
let old_entry_opt = self.get(filename)?;
self.with_dmap_mut(|map| {
map.reset_state(
filename,
old_entry_opt,
wc_tracked,
p1_tracked,
p2_info,
has_meaningful_mtime,
parent_file_data_opt,
)
})
}
pub fn drop_entry_and_copy_source(
&mut self,
filename: &HgPath,
) -> Result<(), DirstateError> {
let was_tracked = self.get(filename)?.map_or(false, |e| e.tracked());
struct Dropped {
was_tracked: bool,
had_entry: bool,
had_copy_source: bool,
}
/// If this returns `Ok(Some((dropped, removed)))`, then
///
/// * `dropped` is about the leaf node that was at `filename`
/// * `removed` is whether this particular level of recursion just
/// removed a node in `nodes`.
fn recur<'on_disk>(
on_disk: &'on_disk [u8],
unreachable_bytes: &mut u32,
nodes: &mut ChildNodes<'on_disk>,
path: &HgPath,
) -> Result<Option<(Dropped, bool)>, DirstateV2ParseError> {
let (first_path_component, rest_of_path) =
path.split_first_component();
let nodes = nodes.make_mut(on_disk, unreachable_bytes)?;
let node = if let Some(node) = nodes.get_mut(first_path_component)
{
node
} else {
return Ok(None);
};
let dropped;
if let Some(rest) = rest_of_path {
if let Some((d, removed)) = recur(
on_disk,
unreachable_bytes,
&mut node.children,
rest,
)? {
dropped = d;
if dropped.had_entry {
node.descendants_with_entry_count = node
.descendants_with_entry_count
.checked_sub(1)
.expect(
"descendants_with_entry_count should be >= 0",
);
}
if dropped.was_tracked {
node.tracked_descendants_count = node
.tracked_descendants_count
.checked_sub(1)
.expect(
"tracked_descendants_count should be >= 0",
);
}
// Directory caches must be invalidated when removing a
// child node
if removed {
if let NodeData::CachedDirectory { .. } = &node.data {
node.data = NodeData::None
}
}
} else {
return Ok(None);
}
} else {
let entry = node.data.as_entry();
let was_tracked = entry.map_or(false, |entry| entry.tracked());
let had_entry = entry.is_some();
if had_entry {
node.data = NodeData::None
}
let mut had_copy_source = false;
if let Some(source) = &node.copy_source {
DirstateMap::count_dropped_path(unreachable_bytes, source);
had_copy_source = true;
node.copy_source = None
}
dropped = Dropped {
was_tracked,
had_entry,
had_copy_source,
};
}
// After recursion, for both leaf (rest_of_path is None) nodes and
// parent nodes, remove a node if it just became empty.
let remove = !node.data.has_entry()
&& node.copy_source.is_none()
&& node.children.is_empty();
if remove {
let (key, _) =
nodes.remove_entry(first_path_component).unwrap();
DirstateMap::count_dropped_path(
unreachable_bytes,
key.full_path(),
)
}
Ok(Some((dropped, remove)))
}
self.with_dmap_mut(|map| {
if let Some((dropped, _removed)) = recur(
map.on_disk,
&mut map.unreachable_bytes,
&mut map.root,
filename,
)? {
if dropped.had_entry {
map.nodes_with_entry_count = map
.nodes_with_entry_count
.checked_sub(1)
.expect("nodes_with_entry_count should be >= 0");
}
if dropped.had_copy_source {
map.nodes_with_copy_source_count = map
.nodes_with_copy_source_count
.checked_sub(1)
.expect("nodes_with_copy_source_count should be >= 0");
}
} else {
debug_assert!(!was_tracked);
}
Ok(())
})
}
pub fn has_tracked_dir(
&mut self,
directory: &HgPath,
) -> Result<bool, DirstateError> {
self.with_dmap_mut(|map| {
if let Some(node) = map.get_node(directory)? {
// A node without a `DirstateEntry` was created to hold child
// nodes, and is therefore a directory.
let is_dir = node.entry()?.is_none();
Ok(is_dir && node.tracked_descendants_count() > 0)
} else {
Ok(false)
}
})
}
pub fn has_dir(
&mut self,
directory: &HgPath,
) -> Result<bool, DirstateError> {
self.with_dmap_mut(|map| {
if let Some(node) = map.get_node(directory)? {
// A node without a `DirstateEntry` was created to hold child
// nodes, and is therefore a directory.
let is_dir = node.entry()?.is_none();
Ok(is_dir && node.descendants_with_entry_count() > 0)
} else {
Ok(false)
}
})
}
#[logging_timer::time("trace")]
pub fn pack_v1(
&self,
parents: DirstateParents,
) -> Result<Vec<u8>, DirstateError> {
let map = self.get_map();
// Optizimation (to be measured?): pre-compute size to avoid `Vec`
// reallocations
let mut size = parents.as_bytes().len();
for node in map.iter_nodes() {
let node = node?;
if node.entry()?.is_some() {
size += packed_entry_size(
node.full_path(map.on_disk)?,
node.copy_source(map.on_disk)?,
);
}
}
let mut packed = Vec::with_capacity(size);
packed.extend(parents.as_bytes());
for node in map.iter_nodes() {
let node = node?;
if let Some(entry) = node.entry()? {
pack_entry(
node.full_path(map.on_disk)?,
&entry,
node.copy_source(map.on_disk)?,
&mut packed,
);
}
}
Ok(packed)
}
/// Returns new data and metadata together with whether that data should be
/// appended to the existing data file whose content is at
/// `map.on_disk` (true), instead of written to a new data file
/// (false), and the previous size of data on disk.
#[logging_timer::time("trace")]
pub fn pack_v2(
&self,
can_append: bool,
) -> Result<(Vec<u8>, on_disk::TreeMetadata, bool, usize), DirstateError>
{
let map = self.get_map();
on_disk::write(map, can_append)
}
/// `callback` allows the caller to process and do something with the
/// results of the status. This is needed to do so efficiently (i.e.
/// without cloning the `DirstateStatus` object with its paths) because
/// we need to borrow from `Self`.
pub fn with_status<R>(
&mut self,
matcher: &(dyn Matcher + Sync),
root_dir: PathBuf,
ignore_files: Vec<PathBuf>,
options: StatusOptions,
callback: impl for<'r> FnOnce(
Result<(DirstateStatus<'r>, Vec<PatternFileWarning>), StatusError>,
) -> R,
) -> R {
self.with_dmap_mut(|map| {
callback(super::status::status(
map,
matcher,
root_dir,
ignore_files,
options,
))
})
}
pub fn copy_map_len(&self) -> usize {
let map = self.get_map();
map.nodes_with_copy_source_count as usize
}
pub fn copy_map_iter(&self) -> CopyMapIter<'_> {
let map = self.get_map();
Box::new(filter_map_results(map.iter_nodes(), move |node| {
Ok(if let Some(source) = node.copy_source(map.on_disk)? {
Some((node.full_path(map.on_disk)?, source))
} else {
None
})
}))
}
pub fn copy_map_contains_key(
&self,
key: &HgPath,
) -> Result<bool, DirstateV2ParseError> {
let map = self.get_map();
Ok(if let Some(node) = map.get_node(key)? {
node.has_copy_source()
} else {
false
})
}
pub fn copy_map_get(
&self,
key: &HgPath,
) -> Result<Option<&HgPath>, DirstateV2ParseError> {
let map = self.get_map();
if let Some(node) = map.get_node(key)? {
if let Some(source) = node.copy_source(map.on_disk)? {
return Ok(Some(source));
}
}
Ok(None)
}
pub fn copy_map_remove(
&mut self,
key: &HgPath,
) -> Result<Option<HgPathBuf>, DirstateV2ParseError> {
self.with_dmap_mut(|map| {
let count = &mut map.nodes_with_copy_source_count;
let unreachable_bytes = &mut map.unreachable_bytes;
Ok(DirstateMap::get_node_mut_inner(
map.on_disk,
unreachable_bytes,
&mut map.root,
key,
|_ancestor| {},
)?
.and_then(|node| {
if let Some(source) = &node.copy_source {
*count = count
.checked_sub(1)
.expect("nodes_with_copy_source_count should be >= 0");
DirstateMap::count_dropped_path(unreachable_bytes, source);
}
node.copy_source.take().map(Cow::into_owned)
}))
})
}
pub fn copy_map_insert(
&mut self,
key: &HgPath,
value: &HgPath,
) -> Result<Option<HgPathBuf>, DirstateV2ParseError> {
self.with_dmap_mut(|map| {
let node = map.get_or_insert_node(&key, |_ancestor| {})?;
let had_copy_source = node.copy_source.is_none();
let old = node
.copy_source
.replace(value.to_owned().into())
.map(Cow::into_owned);
if had_copy_source {
map.nodes_with_copy_source_count += 1
}
Ok(old)
})
}
pub fn len(&self) -> usize {
let map = self.get_map();
map.nodes_with_entry_count as usize
}
pub fn contains_key(
&self,
key: &HgPath,
) -> Result<bool, DirstateV2ParseError> {
Ok(self.get(key)?.is_some())
}
pub fn get(
&self,
key: &HgPath,
) -> Result<Option<DirstateEntry>, DirstateV2ParseError> {
let map = self.get_map();
Ok(if let Some(node) = map.get_node(key)? {
node.entry()?
} else {
None
})
}
pub fn iter(&self) -> StateMapIter<'_> {
let map = self.get_map();
Box::new(filter_map_results(map.iter_nodes(), move |node| {
Ok(if let Some(entry) = node.entry()? {
Some((node.full_path(map.on_disk)?, entry))
} else {
None
})
}))
}
pub fn iter_tracked_dirs(
&mut self,
) -> Result<
Box<
dyn Iterator<Item = Result<&HgPath, DirstateV2ParseError>>
+ Send
+ '_,
>,
DirstateError,
> {
let map = self.get_map();
let on_disk = map.on_disk;
Ok(Box::new(filter_map_results(
map.iter_nodes(),
move |node| {
Ok(if node.tracked_descendants_count() > 0 {
Some(node.full_path(on_disk)?)
} else {
None
})
},
)))
}
/// Only public because it needs to be exposed to the Python layer.
/// It is not the full `setparents` logic, only the parts that mutate the
/// entries.
pub fn setparents_fixup(
&mut self,
) -> Result<Vec<(HgPathBuf, HgPathBuf)>, DirstateV2ParseError> {
// XXX
// All the copying and re-querying is quite inefficient, but this is
// still a lot better than doing it from Python.
//
// The better solution is to develop a mechanism for `iter_mut`,
// which will be a lot more involved: we're dealing with a lazy,
// append-mostly, tree-like data structure. This will do for now.
let mut copies = vec![];
let mut files_with_p2_info = vec![];
for res in self.iter() {
let (path, entry) = res?;
if entry.p2_info() {
files_with_p2_info.push(path.to_owned())
}
}
self.with_dmap_mut(|map| {
for path in files_with_p2_info.iter() {
let node = map.get_or_insert_node(path, |_| {})?;
let entry =
node.data.as_entry_mut().expect("entry should exist");
entry.drop_merge_data();
if let Some(source) = node.copy_source.take().as_deref() {
copies.push((path.to_owned(), source.to_owned()));
}
}
Ok(copies)
})
}
pub fn debug_iter(
&self,
all: bool,
) -> Box<
dyn Iterator<
Item = Result<
(&HgPath, (u8, i32, i32, i32)),
DirstateV2ParseError,
>,
> + Send
+ '_,
> {
let map = self.get_map();
Box::new(filter_map_results(map.iter_nodes(), move |node| {
let debug_tuple = if let Some(entry) = node.entry()? {
entry.debug_tuple()
} else if !all {
return Ok(None);
} else if let Some(mtime) = node.cached_directory_mtime()? {
(b' ', 0, -1, mtime.truncated_seconds() as i32)
} else {
(b' ', 0, -1, -1)
};
Ok(Some((node.full_path(map.on_disk)?, debug_tuple)))
}))
}
}
#[cfg(test)]
mod tests {
use super::*;
/// Shortcut to return tracked descendants of a path.
/// Panics if the path does not exist.
fn tracked_descendants(map: &OwningDirstateMap, path: &[u8]) -> u32 {
let path = dbg!(HgPath::new(path));
let node = map.get_map().get_node(path);
node.unwrap().unwrap().tracked_descendants_count()
}
/// Shortcut to return descendants with an entry.
/// Panics if the path does not exist.
fn descendants_with_an_entry(map: &OwningDirstateMap, path: &[u8]) -> u32 {
let path = dbg!(HgPath::new(path));
let node = map.get_map().get_node(path);
node.unwrap().unwrap().descendants_with_entry_count()
}
fn assert_does_not_exist(map: &OwningDirstateMap, path: &[u8]) {
let path = dbg!(HgPath::new(path));
let node = map.get_map().get_node(path);
assert!(node.unwrap().is_none());
}
/// Shortcut for path creation in tests
fn p(b: &[u8]) -> &HgPath {
HgPath::new(b)
}
/// Test the very simple case a single tracked file
#[test]
fn test_tracked_descendants_simple() -> Result<(), DirstateError> {
let mut map = OwningDirstateMap::new_empty(vec![]);
assert_eq!(map.len(), 0);
map.set_tracked(p(b"some/nested/path"))?;
assert_eq!(map.len(), 1);
assert_eq!(tracked_descendants(&map, b"some"), 1);
assert_eq!(tracked_descendants(&map, b"some/nested"), 1);
assert_eq!(tracked_descendants(&map, b"some/nested/path"), 0);
map.set_untracked(p(b"some/nested/path"))?;
assert_eq!(map.len(), 0);
assert!(map.get_map().get_node(p(b"some"))?.is_none());
Ok(())
}
/// Test the simple case of all tracked, but multiple files
#[test]
fn test_tracked_descendants_multiple() -> Result<(), DirstateError> {
let mut map = OwningDirstateMap::new_empty(vec![]);
map.set_tracked(p(b"some/nested/path"))?;
map.set_tracked(p(b"some/nested/file"))?;
// one layer without any files to test deletion cascade
map.set_tracked(p(b"some/other/nested/path"))?;
map.set_tracked(p(b"root_file"))?;
map.set_tracked(p(b"some/file"))?;
map.set_tracked(p(b"some/file2"))?;
map.set_tracked(p(b"some/file3"))?;
assert_eq!(map.len(), 7);
assert_eq!(tracked_descendants(&map, b"some"), 6);
assert_eq!(tracked_descendants(&map, b"some/nested"), 2);
assert_eq!(tracked_descendants(&map, b"some/other"), 1);
assert_eq!(tracked_descendants(&map, b"some/other/nested"), 1);
assert_eq!(tracked_descendants(&map, b"some/nested/path"), 0);
map.set_untracked(p(b"some/nested/path"))?;
assert_eq!(map.len(), 6);
assert_eq!(tracked_descendants(&map, b"some"), 5);
assert_eq!(tracked_descendants(&map, b"some/nested"), 1);
assert_eq!(tracked_descendants(&map, b"some/other"), 1);
assert_eq!(tracked_descendants(&map, b"some/other/nested"), 1);
map.set_untracked(p(b"some/nested/file"))?;
assert_eq!(map.len(), 5);
assert_eq!(tracked_descendants(&map, b"some"), 4);
assert_eq!(tracked_descendants(&map, b"some/other"), 1);
assert_eq!(tracked_descendants(&map, b"some/other/nested"), 1);
assert_does_not_exist(&map, b"some_nested");
map.set_untracked(p(b"some/other/nested/path"))?;
assert_eq!(map.len(), 4);
assert_eq!(tracked_descendants(&map, b"some"), 3);
assert_does_not_exist(&map, b"some/other");
map.set_untracked(p(b"root_file"))?;
assert_eq!(map.len(), 3);
assert_eq!(tracked_descendants(&map, b"some"), 3);
assert_does_not_exist(&map, b"root_file");
map.set_untracked(p(b"some/file"))?;
assert_eq!(map.len(), 2);
assert_eq!(tracked_descendants(&map, b"some"), 2);
assert_does_not_exist(&map, b"some/file");
map.set_untracked(p(b"some/file2"))?;
assert_eq!(map.len(), 1);
assert_eq!(tracked_descendants(&map, b"some"), 1);
assert_does_not_exist(&map, b"some/file2");
map.set_untracked(p(b"some/file3"))?;
assert_eq!(map.len(), 0);
assert_does_not_exist(&map, b"some/file3");
Ok(())
}
/// Check with a mix of tracked and non-tracked items
#[test]
fn test_tracked_descendants_different() -> Result<(), DirstateError> {
let mut map = OwningDirstateMap::new_empty(vec![]);
// A file that was just added
map.set_tracked(p(b"some/nested/path"))?;
// This has no information, the dirstate should ignore it
map.reset_state(p(b"some/file"), false, false, false, false, None)?;
assert_does_not_exist(&map, b"some/file");
// A file that was removed
map.reset_state(
p(b"some/nested/file"),
false,
true,
false,
false,
None,
)?;
assert!(!map.get(p(b"some/nested/file"))?.unwrap().tracked());
// Only present in p2
map.reset_state(p(b"some/file3"), false, false, true, false, None)?;
assert!(!map.get(p(b"some/file3"))?.unwrap().tracked());
// A file that was merged
map.reset_state(p(b"root_file"), true, true, true, false, None)?;
assert!(map.get(p(b"root_file"))?.unwrap().tracked());
// A file that is added, with info from p2
// XXX is that actually possible?
map.reset_state(p(b"some/file2"), true, false, true, false, None)?;
assert!(map.get(p(b"some/file2"))?.unwrap().tracked());
// A clean file
// One layer without any files to test deletion cascade
map.reset_state(
p(b"some/other/nested/path"),
true,
true,
false,
false,
None,
)?;
assert!(map.get(p(b"some/other/nested/path"))?.unwrap().tracked());
assert_eq!(map.len(), 6);
assert_eq!(tracked_descendants(&map, b"some"), 3);
assert_eq!(descendants_with_an_entry(&map, b"some"), 5);
assert_eq!(tracked_descendants(&map, b"some/other/nested"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/other/nested"), 1);
assert_eq!(tracked_descendants(&map, b"some/other/nested/path"), 0);
assert_eq!(
descendants_with_an_entry(&map, b"some/other/nested/path"),
0
);
assert_eq!(tracked_descendants(&map, b"some/nested"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/nested"), 2);
// might as well check this
map.set_untracked(p(b"path/does/not/exist"))?;
assert_eq!(map.len(), 6);
map.set_untracked(p(b"some/other/nested/path"))?;
// It is set untracked but not deleted since it held other information
assert_eq!(map.len(), 6);
assert_eq!(tracked_descendants(&map, b"some"), 2);
assert_eq!(descendants_with_an_entry(&map, b"some"), 5);
assert_eq!(descendants_with_an_entry(&map, b"some/other"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/other/nested"), 1);
assert_eq!(tracked_descendants(&map, b"some/nested"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/nested"), 2);
map.set_untracked(p(b"some/nested/path"))?;
// It is set untracked *and* deleted since it was only added
assert_eq!(map.len(), 5);
assert_eq!(tracked_descendants(&map, b"some"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some"), 4);
assert_eq!(tracked_descendants(&map, b"some/nested"), 0);
assert_eq!(descendants_with_an_entry(&map, b"some/nested"), 1);
assert_does_not_exist(&map, b"some/nested/path");
map.set_untracked(p(b"root_file"))?;
// Untracked but not deleted
assert_eq!(map.len(), 5);
assert!(map.get(p(b"root_file"))?.is_some());
map.set_untracked(p(b"some/file2"))?;
assert_eq!(map.len(), 5);
assert_eq!(tracked_descendants(&map, b"some"), 0);
assert!(map.get(p(b"some/file2"))?.is_some());
map.set_untracked(p(b"some/file3"))?;
assert_eq!(map.len(), 5);
assert_eq!(tracked_descendants(&map, b"some"), 0);
assert!(map.get(p(b"some/file3"))?.is_some());
Ok(())
}
/// Check that copies counter is correctly updated
#[test]
fn test_copy_source() -> Result<(), DirstateError> {
let mut map = OwningDirstateMap::new_empty(vec![]);
// Clean file
map.reset_state(p(b"files/clean"), true, true, false, false, None)?;
// Merged file
map.reset_state(p(b"files/from_p2"), true, true, true, false, None)?;
// Removed file
map.reset_state(p(b"removed"), false, true, false, false, None)?;
// Added file
map.reset_state(p(b"files/added"), true, false, false, false, None)?;
// Add copy
map.copy_map_insert(p(b"files/clean"), p(b"clean_copy_source"))?;
assert_eq!(map.copy_map_len(), 1);
// Copy override
map.copy_map_insert(p(b"files/clean"), p(b"other_clean_copy_source"))?;
assert_eq!(map.copy_map_len(), 1);
// Multiple copies
map.copy_map_insert(p(b"removed"), p(b"removed_copy_source"))?;
assert_eq!(map.copy_map_len(), 2);
map.copy_map_insert(p(b"files/added"), p(b"added_copy_source"))?;
assert_eq!(map.copy_map_len(), 3);
// Added, so the entry is completely removed
map.set_untracked(p(b"files/added"))?;
assert_does_not_exist(&map, b"files/added");
assert_eq!(map.copy_map_len(), 2);
// Removed, so the entry is kept around, so is its copy
map.set_untracked(p(b"removed"))?;
assert!(map.get(p(b"removed"))?.is_some());
assert_eq!(map.copy_map_len(), 2);
// Clean, so the entry is kept around, but not its copy
map.set_untracked(p(b"files/clean"))?;
assert!(map.get(p(b"files/clean"))?.is_some());
assert_eq!(map.copy_map_len(), 1);
map.copy_map_insert(p(b"files/from_p2"), p(b"from_p2_copy_source"))?;
assert_eq!(map.copy_map_len(), 2);
// Info from p2, so its copy source info is kept around
map.set_untracked(p(b"files/from_p2"))?;
assert!(map.get(p(b"files/from_p2"))?.is_some());
assert_eq!(map.copy_map_len(), 2);
Ok(())
}
/// Test with "on disk" data. For the sake of this test, the "on disk" data
/// does not actually come from the disk, but it's opaque to the code being
/// tested.
#[test]
fn test_on_disk() -> Result<(), DirstateError> {
// First let's create some data to put "on disk"
let mut map = OwningDirstateMap::new_empty(vec![]);
// A file that was just added
map.set_tracked(p(b"some/nested/added"))?;
map.copy_map_insert(p(b"some/nested/added"), p(b"added_copy_source"))?;
// A file that was removed
map.reset_state(
p(b"some/nested/removed"),
false,
true,
false,
false,
None,
)?;
// Only present in p2
map.reset_state(
p(b"other/p2_info_only"),
false,
false,
true,
false,
None,
)?;
map.copy_map_insert(
p(b"other/p2_info_only"),
p(b"other/p2_info_copy_source"),
)?;
// A file that was merged
map.reset_state(p(b"merged"), true, true, true, false, None)?;
// A file that is added, with info from p2
// XXX is that actually possible?
map.reset_state(
p(b"other/added_with_p2"),
true,
false,
true,
false,
None,
)?;
// One layer without any files to test deletion cascade
// A clean file
map.reset_state(
p(b"some/other/nested/clean"),
true,
true,
false,
false,
None,
)?;
let (packed, metadata, _should_append, _old_data_size) =
map.pack_v2(false)?;
let packed_len = packed.len();
assert!(packed_len > 0);
// Recreate "from disk"
let mut map = OwningDirstateMap::new_v2(
packed,
packed_len,
metadata.as_bytes(),
)?;
// Check that everything is accounted for
assert!(map.contains_key(p(b"some/nested/added"))?);
assert!(map.contains_key(p(b"some/nested/removed"))?);
assert!(map.contains_key(p(b"merged"))?);
assert!(map.contains_key(p(b"other/p2_info_only"))?);
assert!(map.contains_key(p(b"other/added_with_p2"))?);
assert!(map.contains_key(p(b"some/other/nested/clean"))?);
assert_eq!(
map.copy_map_get(p(b"some/nested/added"))?,
Some(p(b"added_copy_source"))
);
assert_eq!(
map.copy_map_get(p(b"other/p2_info_only"))?,
Some(p(b"other/p2_info_copy_source"))
);
assert_eq!(tracked_descendants(&map, b"some"), 2);
assert_eq!(descendants_with_an_entry(&map, b"some"), 3);
assert_eq!(tracked_descendants(&map, b"other"), 1);
assert_eq!(descendants_with_an_entry(&map, b"other"), 2);
assert_eq!(tracked_descendants(&map, b"some/other"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/other"), 1);
assert_eq!(tracked_descendants(&map, b"some/other/nested"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/other/nested"), 1);
assert_eq!(tracked_descendants(&map, b"some/nested"), 1);
assert_eq!(descendants_with_an_entry(&map, b"some/nested"), 2);
assert_eq!(map.len(), 6);
assert_eq!(map.get_map().unreachable_bytes, 0);
assert_eq!(map.copy_map_len(), 2);
// Shouldn't change anything since it's already not tracked
map.set_untracked(p(b"some/nested/removed"))?;
assert_eq!(map.get_map().unreachable_bytes, 0);
match map.get_map().root {
ChildNodes::InMemory(_) => {
panic!("root should not have been mutated")
}
_ => (),
}
// We haven't mutated enough (nothing, actually), we should still be in
// the append strategy
assert!(map.get_map().write_should_append());
// But this mutates the structure, so there should be unreachable_bytes
assert!(map.set_untracked(p(b"some/nested/added"))?);
let unreachable_bytes = map.get_map().unreachable_bytes;
assert!(unreachable_bytes > 0);
match map.get_map().root {
ChildNodes::OnDisk(_) => panic!("root should have been mutated"),
_ => (),
}
// This should not mutate the structure either, since `root` has
// already been mutated along with its direct children.
map.set_untracked(p(b"merged"))?;
assert_eq!(map.get_map().unreachable_bytes, unreachable_bytes);
match map.get_map().get_node(p(b"other/added_with_p2"))?.unwrap() {
NodeRef::InMemory(_, _) => {
panic!("'other/added_with_p2' should not have been mutated")
}
_ => (),
}
// But this should, since it's in a different path
// than `<root>some/nested/add`
map.set_untracked(p(b"other/added_with_p2"))?;
assert!(map.get_map().unreachable_bytes > unreachable_bytes);
match map.get_map().get_node(p(b"other/added_with_p2"))?.unwrap() {
NodeRef::OnDisk(_) => {
panic!("'other/added_with_p2' should have been mutated")
}
_ => (),
}
// We have rewritten most of the tree, we should create a new file
assert!(!map.get_map().write_should_append());
Ok(())
}
}