##// END OF EJS Templates
wireprotov2: add phases to "changesetdata" command...
wireprotov2: add phases to "changesetdata" command This commit teaches the "changesetdata" wire protocol command to emit the phase state for each changeset. This is a different approach from existing phase transfer in a few ways. Previously, if there are no new revisions (or we're not using bundle2), we perform a "listkeys" request to retrieve phase heads. And when revision data is being transferred with bundle2, phases data is encoded in a standalone bundle2 part. In both cases, phases data is logically decoupled from the changeset data and is encountered/applied after changeset revision data is received. The new wire protocol purposefully tries to more tightly associate changeset metadata (phases, bookmarks, obsolescence markers, etc) with the changeset revision and index data itself, rather than have it live as a separate entity that must be fetched and processed separately. I reckon that one reason we didn't do this before was it was difficult to add new data types/fields without breaking existing consumers. By using CBOR maps to transfer changeset data and putting clients in control of what fields are requested / present in those maps, we can easily add additional changeset data while maintaining backwards compatibility. I believe this to be a superior approach to the problem. That being said, for performance reasons, we may need to resort to alternative mechanisms for transferring data like phases. But for now, I think giving the wire protocol the ability to transfer changeset metadata next to the changeset itself is a powerful feature because it is a raw, changeset-centric data API. And if you build simple APIs for accessing the fundamental units of repository data, you enable client-side experimentation (partial clone, etc). If it turns out that we need specialized APIs or mechanisms for transferring data like phases, we can build in those APIs later. For now, I'd like to see how far we can get on simple APIs. It's worth noting that when phase data is being requested, the server will also emit changeset records for nodes in the bases specified by the "noderange" argument. This is to ensure that phase-only updates for nodes the client has are available to the client, even if no new changesets will be transferred. Differential Revision: https://phab.mercurial-scm.org/D4483

File last commit:

r38253:9c5ced52 4.6.1 stable
r39668:c1aacb0d default
Show More
mpatch.c
382 lines | 8.1 KiB | text/x-c | CLexer
/*
mpatch.c - efficient binary patching for Mercurial
This implements a patch algorithm that's O(m + nlog n) where m is the
size of the output and n is the number of patches.
Given a list of binary patches, it unpacks each into a hunk list,
then combines the hunk lists with a treewise recursion to form a
single hunk list. This hunk list is then applied to the original
text.
The text (or binary) fragments are copied directly from their source
Python objects into a preallocated output string to avoid the
allocation of intermediate Python objects. Working memory is about 2x
the total number of hunks.
Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
*/
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "bitmanipulation.h"
#include "compat.h"
#include "mpatch.h"
/* VC9 doesn't include bool and lacks stdbool.h based on cext/util.h */
#if defined(_MSC_VER) || __STDC_VERSION__ < 199901L
#define true 1
#define false 0
typedef unsigned char bool;
#else
#include <stdbool.h>
#endif
static struct mpatch_flist *lalloc(ssize_t size)
{
struct mpatch_flist *a = NULL;
if (size < 1)
size = 1;
a = (struct mpatch_flist *)malloc(sizeof(struct mpatch_flist));
if (a) {
a->base = (struct mpatch_frag *)malloc(
sizeof(struct mpatch_frag) * size);
if (a->base) {
a->head = a->tail = a->base;
return a;
}
free(a);
}
return NULL;
}
void mpatch_lfree(struct mpatch_flist *a)
{
if (a) {
free(a->base);
free(a);
}
}
static ssize_t lsize(struct mpatch_flist *a)
{
return a->tail - a->head;
}
/* add helper to add src and *dest iff it won't overflow */
static inline bool safeadd(int src, int *dest)
{
if ((src > 0) == (*dest > 0)) {
if (*dest > 0) {
if (src > (INT_MAX - *dest)) {
return false;
}
} else {
if (src < (INT_MIN - *dest)) {
return false;
}
}
}
*dest += src;
return true;
}
/* subtract src from dest and store result in dest */
static inline bool safesub(int src, int *dest)
{
if (((src > 0) && (*dest < INT_MIN + src)) ||
((src < 0) && (*dest > INT_MAX + src))) {
return false;
}
*dest -= src;
return true;
}
/* move hunks in source that are less cut to dest, compensating
for changes in offset. the last hunk may be split if necessary.
*/
static int gather(struct mpatch_flist *dest, struct mpatch_flist *src, int cut,
int offset)
{
struct mpatch_frag *d = dest->tail, *s = src->head;
int postend, c, l;
while (s != src->tail) {
int soffset = s->start;
if (!safeadd(offset, &soffset))
break; /* add would overflow, oh well */
if (soffset >= cut)
break; /* we've gone far enough */
postend = offset;
if (!safeadd(s->start, &postend) ||
!safeadd(s->len, &postend)) {
break;
}
if (postend <= cut) {
/* save this hunk */
int tmp = s->start;
if (!safesub(s->end, &tmp)) {
break;
}
if (!safeadd(s->len, &tmp)) {
break;
}
if (!safeadd(tmp, &offset)) {
break; /* add would overflow, oh well */
}
*d++ = *s++;
} else {
/* break up this hunk */
c = cut;
if (!safesub(offset, &c)) {
break;
}
if (s->end < c)
c = s->end;
l = cut - offset - s->start;
if (s->len < l)
l = s->len;
offset += s->start + l - c;
d->start = s->start;
d->end = c;
d->len = l;
d->data = s->data;
d++;
s->start = c;
s->len = s->len - l;
s->data = s->data + l;
break;
}
}
dest->tail = d;
src->head = s;
return offset;
}
/* like gather, but with no output list */
static int discard(struct mpatch_flist *src, int cut, int offset)
{
struct mpatch_frag *s = src->head;
int postend, c, l;
while (s != src->tail) {
int cmpcut = s->start;
if (!safeadd(offset, &cmpcut)) {
break;
}
if (cmpcut >= cut)
break;
postend = offset;
if (!safeadd(s->start, &postend)) {
break;
}
if (!safeadd(s->len, &postend)) {
break;
}
if (postend <= cut) {
/* do the subtraction first to avoid UB integer overflow
*/
int tmp = s->start;
if (!safesub(s->end, &tmp)) {
break;
}
if (!safeadd(s->len, &tmp)) {
break;
}
if (!safeadd(tmp, &offset)) {
break;
}
s++;
} else {
c = cut;
if (!safesub(offset, &c)) {
break;
}
if (s->end < c)
c = s->end;
l = cut - offset - s->start;
if (s->len < l)
l = s->len;
offset += s->start + l - c;
s->start = c;
s->len = s->len - l;
s->data = s->data + l;
break;
}
}
src->head = s;
return offset;
}
/* combine hunk lists a and b, while adjusting b for offset changes in a/
this deletes a and b and returns the resultant list. */
static struct mpatch_flist *combine(struct mpatch_flist *a,
struct mpatch_flist *b)
{
struct mpatch_flist *c = NULL;
struct mpatch_frag *bh, *ct;
int offset = 0, post;
if (a && b)
c = lalloc((lsize(a) + lsize(b)) * 2);
if (c) {
for (bh = b->head; bh != b->tail; bh++) {
/* save old hunks */
offset = gather(c, a, bh->start, offset);
/* discard replaced hunks */
post = discard(a, bh->end, offset);
/* insert new hunk */
ct = c->tail;
ct->start = bh->start;
ct->end = bh->end;
if (!safesub(offset, &(ct->start)) ||
!safesub(post, &(ct->end))) {
/* It was already possible to exit
* this function with a return value
* of NULL before the safesub()s were
* added, so this should be fine. */
mpatch_lfree(c);
c = NULL;
goto done;
}
ct->len = bh->len;
ct->data = bh->data;
c->tail++;
offset = post;
}
/* hold on to tail from a */
memcpy(c->tail, a->head, sizeof(struct mpatch_frag) * lsize(a));
c->tail += lsize(a);
}
done:
mpatch_lfree(a);
mpatch_lfree(b);
return c;
}
/* decode a binary patch into a hunk list */
int mpatch_decode(const char *bin, ssize_t len, struct mpatch_flist **res)
{
struct mpatch_flist *l;
struct mpatch_frag *lt;
int pos = 0;
/* assume worst case size, we won't have many of these lists */
l = lalloc(len / 12 + 1);
if (!l)
return MPATCH_ERR_NO_MEM;
lt = l->tail;
/* We check against len-11 to ensure we have at least 12 bytes
left in the patch so we can read our three be32s out of it. */
while (pos >= 0 && pos < (len - 11)) {
lt->start = getbe32(bin + pos);
lt->end = getbe32(bin + pos + 4);
lt->len = getbe32(bin + pos + 8);
if (lt->start < 0 || lt->start > lt->end || lt->len < 0)
break; /* sanity check */
if (!safeadd(12, &pos)) {
break;
}
lt->data = bin + pos;
if (!safeadd(lt->len, &pos)) {
break;
}
lt++;
}
if (pos != len) {
mpatch_lfree(l);
return MPATCH_ERR_CANNOT_BE_DECODED;
}
l->tail = lt;
*res = l;
return 0;
}
/* calculate the size of resultant text */
ssize_t mpatch_calcsize(ssize_t len, struct mpatch_flist *l)
{
ssize_t outlen = 0, last = 0;
struct mpatch_frag *f = l->head;
while (f != l->tail) {
if (f->start < last || f->end > len) {
return MPATCH_ERR_INVALID_PATCH;
}
outlen += f->start - last;
last = f->end;
outlen += f->len;
f++;
}
outlen += len - last;
return outlen;
}
int mpatch_apply(char *buf, const char *orig, ssize_t len,
struct mpatch_flist *l)
{
struct mpatch_frag *f = l->head;
int last = 0;
char *p = buf;
while (f != l->tail) {
if (f->start < last || f->start > len || f->end > len ||
last < 0) {
return MPATCH_ERR_INVALID_PATCH;
}
memcpy(p, orig + last, f->start - last);
p += f->start - last;
memcpy(p, f->data, f->len);
last = f->end;
p += f->len;
f++;
}
if (last < 0) {
return MPATCH_ERR_INVALID_PATCH;
}
memcpy(p, orig + last, len - last);
return 0;
}
/* recursively generate a patch of all bins between start and end */
struct mpatch_flist *
mpatch_fold(void *bins, struct mpatch_flist *(*get_next_item)(void *, ssize_t),
ssize_t start, ssize_t end)
{
ssize_t len;
if (start + 1 == end) {
/* trivial case, output a decoded list */
return get_next_item(bins, start);
}
/* divide and conquer, memory management is elsewhere */
len = (end - start) / 2;
return combine(mpatch_fold(bins, get_next_item, start, start + len),
mpatch_fold(bins, get_next_item, start + len, end));
}