##// END OF EJS Templates
dirstate: ignore symlinks when fs cannot handle them (issue1888)...
dirstate: ignore symlinks when fs cannot handle them (issue1888) When the filesystem cannot handle the executable bit, we currently ignore it completely when looking for modified files. Similarly, it is impossible to set or clear the bit when the filesystem ignores it. This patch makes Mercurial treat symbolic links the same way. Symlinks are a little different since they manifest themselves as small files containing a filename (the symlink target). On Windows, these files show up as regular files, and on Linux and Mac they show up as real symlinks. Issue1888 presents a case where the symlink files are better ignored from the Windows side. A Linux client creates symlinks in a working copy which is shared over a network between Linux and Windows clients. The Samba server is helpful and defererences the symlink when the Windows client looks at it. This means that Mercurial on the Windows side sees file content instead of a file name in the symlink, and hence flags the link as modified. Ignoring the change would be much more helpful, similarly to how Mercurial does not report any changes when executable bits are ignored in a checkout on Windows. An initial checkout of a symbolic link on a file system that cannot handle symbolic links will still result in a regular file containing the target file name as its content. Sharing such a checkout with a Linux client will not turn the file into a symlink automatically, but 'hg revert' can fix that. After the revert, the Windows client will see the correct file content (provided by the Samba server when it follows the link on the Linux side) and otherwise ignore the change. Running 'hg perfstatus' 10 times gives these results: Before: After: min: 0.544703 min: 0.546549 med: 0.547592 med: 0.548881 avg: 0.549146 avg: 0.548549 max: 0.564112 max: 0.551504 The median time is increased about 0.24%.

File last commit:

r10263:25e57239 stable
r11769:ca6cebd8 stable
Show More
lock.py
137 lines | 4.2 KiB | text/x-python | PythonLexer
# lock.py - simple advisory locking scheme for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
import util, error
import errno, os, socket, time
import warnings
class lock(object):
'''An advisory lock held by one process to control access to a set
of files. Non-cooperating processes or incorrectly written scripts
can ignore Mercurial's locking scheme and stomp all over the
repository, so don't do that.
Typically used via localrepository.lock() to lock the repository
store (.hg/store/) or localrepository.wlock() to lock everything
else under .hg/.'''
# lock is symlink on platforms that support it, file on others.
# symlink is used because create of directory entry and contents
# are atomic even over nfs.
# old-style lock: symlink to pid
# new-style lock: symlink to hostname:pid
_host = None
def __init__(self, file, timeout=-1, releasefn=None, desc=None):
self.f = file
self.held = 0
self.timeout = timeout
self.releasefn = releasefn
self.desc = desc
self.lock()
def __del__(self):
if self.held:
warnings.warn("use lock.release instead of del lock",
category=DeprecationWarning,
stacklevel=2)
# ensure the lock will be removed
# even if recursive locking did occur
self.held = 1
self.release()
def lock(self):
timeout = self.timeout
while 1:
try:
self.trylock()
return 1
except error.LockHeld, inst:
if timeout != 0:
time.sleep(1)
if timeout > 0:
timeout -= 1
continue
raise error.LockHeld(errno.ETIMEDOUT, inst.filename, self.desc,
inst.locker)
def trylock(self):
if self.held:
self.held += 1
return
if lock._host is None:
lock._host = socket.gethostname()
lockname = '%s:%s' % (lock._host, os.getpid())
while not self.held:
try:
util.makelock(lockname, self.f)
self.held = 1
except (OSError, IOError), why:
if why.errno == errno.EEXIST:
locker = self.testlock()
if locker is not None:
raise error.LockHeld(errno.EAGAIN, self.f, self.desc,
locker)
else:
raise error.LockUnavailable(why.errno, why.strerror,
why.filename, self.desc)
def testlock(self):
"""return id of locker if lock is valid, else None.
If old-style lock, we cannot tell what machine locker is on.
with new-style lock, if locker is on this machine, we can
see if locker is alive. If locker is on this machine but
not alive, we can safely break lock.
The lock file is only deleted when None is returned.
"""
locker = util.readlock(self.f)
try:
host, pid = locker.split(":", 1)
except ValueError:
return locker
if host != lock._host:
return locker
try:
pid = int(pid)
except ValueError:
return locker
if util.testpid(pid):
return locker
# if locker dead, break lock. must do this with another lock
# held, or can race and break valid lock.
try:
l = lock(self.f + '.break', timeout=0)
os.unlink(self.f)
l.release()
except error.LockError:
return locker
def release(self):
if self.held > 1:
self.held -= 1
elif self.held == 1:
self.held = 0
if self.releasefn:
self.releasefn()
try:
os.unlink(self.f)
except OSError:
pass
def release(*locks):
for lock in locks:
if lock is not None:
lock.release()