##// END OF EJS Templates
dirstate-tree: Add tree traversal/iteration...
dirstate-tree: Add tree traversal/iteration Like Python’s, Rust’s iterators are "external" in that they are driven by a caller who calls a `next` method. This is as opposed to "internal" iterators who drive themselves and call a callback for each item. Writing an internal iterator traversing a tree is easy with recursion, but internal iterators cannot rely on the call stack in that way, they must save in an explicit object all state that they need to be preserved across two `next` calls. This algorithm uses a `Vec` as a stack that contains what would be local variables on the call stack if we could use recursion. Differential Revision: https://phab.mercurial-scm.org/D10370

File last commit:

r47811:d57386e5 default
r47870:caa3031c default
Show More
revlog.rs
504 lines | 16.7 KiB | application/rls-services+xml | RustLexer
// revlog.rs
//
// Copyright 2019-2020 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
use crate::{
cindex,
utils::{node_from_py_bytes, node_from_py_object},
};
use cpython::{
buffer::{Element, PyBuffer},
exc::{IndexError, ValueError},
ObjectProtocol, PyBytes, PyClone, PyDict, PyErr, PyInt, PyModule,
PyObject, PyResult, PyString, PyTuple, Python, PythonObject, ToPyObject,
};
use hg::{
nodemap::{Block, NodeMapError, NodeTree},
revlog::{nodemap::NodeMap, NodePrefix, RevlogIndex},
Revision,
};
use std::cell::RefCell;
/// Return a Struct implementing the Graph trait
pub(crate) fn pyindex_to_graph(
py: Python,
index: PyObject,
) -> PyResult<cindex::Index> {
match index.extract::<MixedIndex>(py) {
Ok(midx) => Ok(midx.clone_cindex(py)),
Err(_) => cindex::Index::new(py, index),
}
}
py_class!(pub class MixedIndex |py| {
data cindex: RefCell<cindex::Index>;
data nt: RefCell<Option<NodeTree>>;
data docket: RefCell<Option<PyObject>>;
// Holds a reference to the mmap'ed persistent nodemap data
data mmap: RefCell<Option<PyBuffer>>;
def __new__(_cls, cindex: PyObject) -> PyResult<MixedIndex> {
Self::new(py, cindex)
}
/// Compatibility layer used for Python consumers needing access to the C index
///
/// Only use case so far is `scmutil.shortesthexnodeidprefix`,
/// that may need to build a custom `nodetree`, based on a specified revset.
/// With a Rust implementation of the nodemap, we will be able to get rid of
/// this, by exposing our own standalone nodemap class,
/// ready to accept `MixedIndex`.
def get_cindex(&self) -> PyResult<PyObject> {
Ok(self.cindex(py).borrow().inner().clone_ref(py))
}
// Index API involving nodemap, as defined in mercurial/pure/parsers.py
/// Return Revision if found, raises a bare `error.RevlogError`
/// in case of ambiguity, same as C version does
def get_rev(&self, node: PyBytes) -> PyResult<Option<Revision>> {
let opt = self.get_nodetree(py)?.borrow();
let nt = opt.as_ref().unwrap();
let idx = &*self.cindex(py).borrow();
let node = node_from_py_bytes(py, &node)?;
nt.find_bin(idx, node.into()).map_err(|e| nodemap_error(py, e))
}
/// same as `get_rev()` but raises a bare `error.RevlogError` if node
/// is not found.
///
/// No need to repeat `node` in the exception, `mercurial/revlog.py`
/// will catch and rewrap with it
def rev(&self, node: PyBytes) -> PyResult<Revision> {
self.get_rev(py, node)?.ok_or_else(|| revlog_error(py))
}
/// return True if the node exist in the index
def has_node(&self, node: PyBytes) -> PyResult<bool> {
self.get_rev(py, node).map(|opt| opt.is_some())
}
/// find length of shortest hex nodeid of a binary ID
def shortest(&self, node: PyBytes) -> PyResult<usize> {
let opt = self.get_nodetree(py)?.borrow();
let nt = opt.as_ref().unwrap();
let idx = &*self.cindex(py).borrow();
match nt.unique_prefix_len_node(idx, &node_from_py_bytes(py, &node)?)
{
Ok(Some(l)) => Ok(l),
Ok(None) => Err(revlog_error(py)),
Err(e) => Err(nodemap_error(py, e)),
}
}
def partialmatch(&self, node: PyObject) -> PyResult<Option<PyBytes>> {
let opt = self.get_nodetree(py)?.borrow();
let nt = opt.as_ref().unwrap();
let idx = &*self.cindex(py).borrow();
let node_as_string = if cfg!(feature = "python3-sys") {
node.cast_as::<PyString>(py)?.to_string(py)?.to_string()
}
else {
let node = node.extract::<PyBytes>(py)?;
String::from_utf8_lossy(node.data(py)).to_string()
};
let prefix = NodePrefix::from_hex(&node_as_string).map_err(|_| PyErr::new::<ValueError, _>(py, "Invalid node or prefix"))?;
nt.find_bin(idx, prefix)
// TODO make an inner API returning the node directly
.map(|opt| opt.map(
|rev| PyBytes::new(py, idx.node(rev).unwrap().as_bytes())))
.map_err(|e| nodemap_error(py, e))
}
/// append an index entry
def append(&self, tup: PyTuple) -> PyResult<PyObject> {
if tup.len(py) < 8 {
// this is better than the panic promised by tup.get_item()
return Err(
PyErr::new::<IndexError, _>(py, "tuple index out of range"))
}
let node_bytes = tup.get_item(py, 7).extract(py)?;
let node = node_from_py_object(py, &node_bytes)?;
let mut idx = self.cindex(py).borrow_mut();
let rev = idx.len() as Revision;
idx.append(py, tup)?;
self.get_nodetree(py)?.borrow_mut().as_mut().unwrap()
.insert(&*idx, &node, rev)
.map_err(|e| nodemap_error(py, e))?;
Ok(py.None())
}
def __delitem__(&self, key: PyObject) -> PyResult<()> {
// __delitem__ is both for `del idx[r]` and `del idx[r1:r2]`
self.cindex(py).borrow().inner().del_item(py, key)?;
let mut opt = self.get_nodetree(py)?.borrow_mut();
let mut nt = opt.as_mut().unwrap();
nt.invalidate_all();
self.fill_nodemap(py, &mut nt)?;
Ok(())
}
//
// Reforwarded C index API
//
// index_methods (tp_methods). Same ordering as in revlog.c
/// return the gca set of the given revs
def ancestors(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "ancestors", args, kw)
}
/// return the heads of the common ancestors of the given revs
def commonancestorsheads(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "commonancestorsheads", args, kw)
}
/// Clear the index caches and inner py_class data.
/// It is Python's responsibility to call `update_nodemap_data` again.
def clearcaches(&self, *args, **kw) -> PyResult<PyObject> {
self.nt(py).borrow_mut().take();
self.docket(py).borrow_mut().take();
self.mmap(py).borrow_mut().take();
self.call_cindex(py, "clearcaches", args, kw)
}
/// return the raw binary string representing a revision
def entry_binary(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "entry_binary", args, kw)
}
/// return a binary packed version of the header
def pack_header(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "pack_header", args, kw)
}
/// get an index entry
def get(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "get", args, kw)
}
/// compute phases
def computephasesmapsets(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "computephasesmapsets", args, kw)
}
/// reachableroots
def reachableroots2(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "reachableroots2", args, kw)
}
/// get head revisions
def headrevs(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "headrevs", args, kw)
}
/// get filtered head revisions
def headrevsfiltered(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "headrevsfiltered", args, kw)
}
/// True if the object is a snapshot
def issnapshot(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "issnapshot", args, kw)
}
/// Gather snapshot data in a cache dict
def findsnapshots(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "findsnapshots", args, kw)
}
/// determine revisions with deltas to reconstruct fulltext
def deltachain(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "deltachain", args, kw)
}
/// slice planned chunk read to reach a density threshold
def slicechunktodensity(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "slicechunktodensity", args, kw)
}
/// stats for the index
def stats(&self, *args, **kw) -> PyResult<PyObject> {
self.call_cindex(py, "stats", args, kw)
}
// index_sequence_methods and index_mapping_methods.
//
// Since we call back through the high level Python API,
// there's no point making a distinction between index_get
// and index_getitem.
def __len__(&self) -> PyResult<usize> {
self.cindex(py).borrow().inner().len(py)
}
def __getitem__(&self, key: PyObject) -> PyResult<PyObject> {
// this conversion seems needless, but that's actually because
// `index_getitem` does not handle conversion from PyLong,
// which expressions such as [e for e in index] internally use.
// Note that we don't seem to have a direct way to call
// PySequence_GetItem (does the job), which would possibly be better
// for performance
let key = match key.extract::<Revision>(py) {
Ok(rev) => rev.to_py_object(py).into_object(),
Err(_) => key,
};
self.cindex(py).borrow().inner().get_item(py, key)
}
def __setitem__(&self, key: PyObject, value: PyObject) -> PyResult<()> {
self.cindex(py).borrow().inner().set_item(py, key, value)
}
def __contains__(&self, item: PyObject) -> PyResult<bool> {
// ObjectProtocol does not seem to provide contains(), so
// this is an equivalent implementation of the index_contains()
// defined in revlog.c
let cindex = self.cindex(py).borrow();
match item.extract::<Revision>(py) {
Ok(rev) => {
Ok(rev >= -1 && rev < cindex.inner().len(py)? as Revision)
}
Err(_) => {
cindex.inner().call_method(
py,
"has_node",
PyTuple::new(py, &[item]),
None)?
.extract(py)
}
}
}
def nodemap_data_all(&self) -> PyResult<PyBytes> {
self.inner_nodemap_data_all(py)
}
def nodemap_data_incremental(&self) -> PyResult<PyObject> {
self.inner_nodemap_data_incremental(py)
}
def update_nodemap_data(
&self,
docket: PyObject,
nm_data: PyObject
) -> PyResult<PyObject> {
self.inner_update_nodemap_data(py, docket, nm_data)
}
@property
def entry_size(&self) -> PyResult<PyInt> {
self.cindex(py).borrow().inner().getattr(py, "entry_size")?.extract::<PyInt>(py)
}
});
impl MixedIndex {
fn new(py: Python, cindex: PyObject) -> PyResult<MixedIndex> {
Self::create_instance(
py,
RefCell::new(cindex::Index::new(py, cindex)?),
RefCell::new(None),
RefCell::new(None),
RefCell::new(None),
)
}
/// This is scaffolding at this point, but it could also become
/// a way to start a persistent nodemap or perform a
/// vacuum / repack operation
fn fill_nodemap(
&self,
py: Python,
nt: &mut NodeTree,
) -> PyResult<PyObject> {
let index = self.cindex(py).borrow();
for r in 0..index.len() {
let rev = r as Revision;
// in this case node() won't ever return None
nt.insert(&*index, index.node(rev).unwrap(), rev)
.map_err(|e| nodemap_error(py, e))?
}
Ok(py.None())
}
fn get_nodetree<'a>(
&'a self,
py: Python<'a>,
) -> PyResult<&'a RefCell<Option<NodeTree>>> {
if self.nt(py).borrow().is_none() {
let readonly = Box::new(Vec::new());
let mut nt = NodeTree::load_bytes(readonly, 0);
self.fill_nodemap(py, &mut nt)?;
self.nt(py).borrow_mut().replace(nt);
}
Ok(self.nt(py))
}
/// forward a method call to the underlying C index
fn call_cindex(
&self,
py: Python,
name: &str,
args: &PyTuple,
kwargs: Option<&PyDict>,
) -> PyResult<PyObject> {
self.cindex(py)
.borrow()
.inner()
.call_method(py, name, args, kwargs)
}
pub fn clone_cindex(&self, py: Python) -> cindex::Index {
self.cindex(py).borrow().clone_ref(py)
}
/// Returns the full nodemap bytes to be written as-is to disk
fn inner_nodemap_data_all(&self, py: Python) -> PyResult<PyBytes> {
let nodemap = self.get_nodetree(py)?.borrow_mut().take().unwrap();
let (readonly, bytes) = nodemap.into_readonly_and_added_bytes();
// If there's anything readonly, we need to build the data again from
// scratch
let bytes = if readonly.len() > 0 {
let mut nt = NodeTree::load_bytes(Box::new(vec![]), 0);
self.fill_nodemap(py, &mut nt)?;
let (readonly, bytes) = nt.into_readonly_and_added_bytes();
assert_eq!(readonly.len(), 0);
bytes
} else {
bytes
};
let bytes = PyBytes::new(py, &bytes);
Ok(bytes)
}
/// Returns the last saved docket along with the size of any changed data
/// (in number of blocks), and said data as bytes.
fn inner_nodemap_data_incremental(
&self,
py: Python,
) -> PyResult<PyObject> {
let docket = self.docket(py).borrow();
let docket = match docket.as_ref() {
Some(d) => d,
None => return Ok(py.None()),
};
let node_tree = self.get_nodetree(py)?.borrow_mut().take().unwrap();
let masked_blocks = node_tree.masked_readonly_blocks();
let (_, data) = node_tree.into_readonly_and_added_bytes();
let changed = masked_blocks * std::mem::size_of::<Block>();
Ok((docket, changed, PyBytes::new(py, &data))
.to_py_object(py)
.into_object())
}
/// Update the nodemap from the new (mmaped) data.
/// The docket is kept as a reference for later incremental calls.
fn inner_update_nodemap_data(
&self,
py: Python,
docket: PyObject,
nm_data: PyObject,
) -> PyResult<PyObject> {
let buf = PyBuffer::get(py, &nm_data)?;
let len = buf.item_count();
// Build a slice from the mmap'ed buffer data
let cbuf = buf.buf_ptr();
let bytes = if std::mem::size_of::<u8>() == buf.item_size()
&& buf.is_c_contiguous()
&& u8::is_compatible_format(buf.format())
{
unsafe { std::slice::from_raw_parts(cbuf as *const u8, len) }
} else {
return Err(PyErr::new::<ValueError, _>(
py,
"Nodemap data buffer has an invalid memory representation"
.to_string(),
));
};
// Keep a reference to the mmap'ed buffer, otherwise we get a dangling
// pointer.
self.mmap(py).borrow_mut().replace(buf);
let mut nt = NodeTree::load_bytes(Box::new(bytes), len);
let data_tip =
docket.getattr(py, "tip_rev")?.extract::<Revision>(py)?;
self.docket(py).borrow_mut().replace(docket.clone_ref(py));
let idx = self.cindex(py).borrow();
let current_tip = idx.len();
for r in (data_tip + 1)..current_tip as Revision {
let rev = r as Revision;
// in this case node() won't ever return None
nt.insert(&*idx, idx.node(rev).unwrap(), rev)
.map_err(|e| nodemap_error(py, e))?
}
*self.nt(py).borrow_mut() = Some(nt);
Ok(py.None())
}
}
fn revlog_error(py: Python) -> PyErr {
match py
.import("mercurial.error")
.and_then(|m| m.get(py, "RevlogError"))
{
Err(e) => e,
Ok(cls) => PyErr::from_instance(py, cls),
}
}
fn rev_not_in_index(py: Python, rev: Revision) -> PyErr {
PyErr::new::<ValueError, _>(
py,
format!(
"Inconsistency: Revision {} found in nodemap \
is not in revlog index",
rev
),
)
}
/// Standard treatment of NodeMapError
fn nodemap_error(py: Python, err: NodeMapError) -> PyErr {
match err {
NodeMapError::MultipleResults => revlog_error(py),
NodeMapError::RevisionNotInIndex(r) => rev_not_in_index(py, r),
}
}
/// Create the module, with __package__ given from parent
pub fn init_module(py: Python, package: &str) -> PyResult<PyModule> {
let dotted_name = &format!("{}.revlog", package);
let m = PyModule::new(py, dotted_name)?;
m.add(py, "__package__", package)?;
m.add(py, "__doc__", "RevLog - Rust implementations")?;
m.add_class::<MixedIndex>(py)?;
let sys = PyModule::import(py, "sys")?;
let sys_modules: PyDict = sys.get(py, "modules")?.extract(py)?;
sys_modules.set_item(py, dotted_name, &m)?;
Ok(m)
}