##// END OF EJS Templates
obsolete: avoid using revset language to compute the obsolete revset...
obsolete: avoid using revset language to compute the obsolete revset This is part of a refactoring that moves some phase query optimization from revset.py to phases.py. See previous patches for the motivation. Now we have APIs in phasecache to get the non-public set efficiently, let's use it directly instead of going through the "not public()" revset language in "obsolete()" computation. This patch was meaured using: for i in 'public()' 'not public()' 'draft()' 'not draft()'; do hg perfrevset "$i"; hg perfrevset "$i" --hidden; done and no noticeable (> 1%) performance difference was observed.

File last commit:

r30809:86145461 default
r31018:cb5888c0 default
Show More
similar.py
115 lines | 3.8 KiB | text/x-python | PythonLexer
# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import hashlib
from .i18n import _
from . import (
bdiff,
mdiff,
)
def _findexactmatches(repo, added, removed):
'''find renamed files that have no changes
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after) tuples of exact matches.
'''
numfiles = len(added) + len(removed)
# Get hashes of removed files.
hashes = {}
for i, fctx in enumerate(removed):
repo.ui.progress(_('searching for exact renames'), i, total=numfiles,
unit=_('files'))
h = hashlib.sha1(fctx.data()).digest()
hashes[h] = fctx
# For each added file, see if it corresponds to a removed file.
for i, fctx in enumerate(added):
repo.ui.progress(_('searching for exact renames'), i + len(removed),
total=numfiles, unit=_('files'))
h = hashlib.sha1(fctx.data()).digest()
if h in hashes:
yield (hashes[h], fctx)
# Done
repo.ui.progress(_('searching for exact renames'), None)
def _ctxdata(fctx):
# lazily load text
orig = fctx.data()
return orig, mdiff.splitnewlines(orig)
def _score(fctx, otherdata):
orig, lines = otherdata
text = fctx.data()
# bdiff.blocks() returns blocks of matching lines
# count the number of bytes in each
equal = 0
matches = bdiff.blocks(text, orig)
for x1, x2, y1, y2 in matches:
for line in lines[y1:y2]:
equal += len(line)
lengths = len(text) + len(orig)
return equal * 2.0 / lengths
def score(fctx1, fctx2):
return _score(fctx1, _ctxdata(fctx2))
def _findsimilarmatches(repo, added, removed, threshold):
'''find potentially renamed files based on similar file content
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after, score) tuples of partial matches.
'''
copies = {}
for i, r in enumerate(removed):
repo.ui.progress(_('searching for similar files'), i,
total=len(removed), unit=_('files'))
data = None
for a in added:
bestscore = copies.get(a, (None, threshold))[1]
if data is None:
data = _ctxdata(r)
myscore = _score(a, data)
if myscore >= bestscore:
copies[a] = (r, myscore)
repo.ui.progress(_('searching'), None)
for dest, v in copies.iteritems():
source, bscore = v
yield source, dest, bscore
def findrenames(repo, added, removed, threshold):
'''find renamed files -- yields (before, after, score) tuples'''
parentctx = repo['.']
workingctx = repo[None]
# Zero length files will be frequently unrelated to each other, and
# tracking the deletion/addition of such a file will probably cause more
# harm than good. We strip them out here to avoid matching them later on.
addedfiles = set([workingctx[fp] for fp in added
if workingctx[fp].size() > 0])
removedfiles = set([parentctx[fp] for fp in removed
if fp in parentctx and parentctx[fp].size() > 0])
# Find exact matches.
for (a, b) in _findexactmatches(repo,
sorted(addedfiles), sorted(removedfiles)):
addedfiles.remove(b)
yield (a.path(), b.path(), 1.0)
# If the user requested similar files to be matched, search for them also.
if threshold < 1.0:
for (a, b, score) in _findsimilarmatches(repo,
sorted(addedfiles), sorted(removedfiles), threshold):
yield (a.path(), b.path(), score)