##// END OF EJS Templates
util: optimize cost auditing on insert...
util: optimize cost auditing on insert Calling popoldest() on insert with cost auditing enabled introduces significant overhead. The primary reason for this overhead is that popoldest() needs to walk the linked list to find the first non-empty node. When we call popoldest() within a loop, this can become quadratic. The performance impact is more pronounced on caches with large capacities. This commit effectively inlines the popoldest() call into _enforcecostlimit(). By doing so, we only do the backwards walk to find the first empty node once. However, we still may still perform this work on insert when the cache is near cost capacity. So this is only a partial performance win. $ hg perflrucachedict --size 4 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 100 ! gets w/ cost limit ! wall 0.598737 comb 0.590000 user 0.590000 sys 0.000000 (best of 17) ! inserts w/ cost limit ! wall 1.694282 comb 1.700000 user 1.700000 sys 0.000000 (best of 6) ! wall 1.659181 comb 1.650000 user 1.650000 sys 0.000000 (best of 7) ! mixed w/ cost limit ! wall 1.157655 comb 1.150000 user 1.150000 sys 0.000000 (best of 9) ! wall 1.139955 comb 1.140000 user 1.140000 sys 0.000000 (best of 9) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 ! gets w/ cost limit ! wall 0.598526 comb 0.600000 user 0.600000 sys 0.000000 (best of 17) ! wall 0.601993 comb 0.600000 user 0.600000 sys 0.000000 (best of 17) ! inserts w/ cost limit ! wall 37.838315 comb 37.840000 user 37.840000 sys 0.000000 (best of 3) ! wall 25.105273 comb 25.080000 user 25.080000 sys 0.000000 (best of 3) ! mixed w/ cost limit ! wall 18.060198 comb 18.060000 user 18.060000 sys 0.000000 (best of 3) ! wall 12.104470 comb 12.070000 user 12.070000 sys 0.000000 (best of 3) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 --mixedgetfreq 90 ! gets w/ cost limit ! wall 0.600024 comb 0.600000 user 0.600000 sys 0.000000 (best of 17) ! wall 0.614439 comb 0.620000 user 0.620000 sys 0.000000 (best of 17) ! inserts w/ cost limit ! wall 37.154547 comb 37.120000 user 37.120000 sys 0.000000 (best of 3) ! wall 25.963028 comb 25.960000 user 25.960000 sys 0.000000 (best of 3) ! mixed w/ cost limit ! wall 4.381602 comb 4.380000 user 4.370000 sys 0.010000 (best of 3) ! wall 3.174256 comb 3.170000 user 3.170000 sys 0.000000 (best of 4) Differential Revision: https://phab.mercurial-scm.org/D4504

File last commit:

r38414:59c9d3cc default
r39605:cc23c09b default
Show More
similar.py
121 lines | 4.0 KiB | text/x-python | PythonLexer
# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
from .i18n import _
from . import (
mdiff,
)
def _findexactmatches(repo, added, removed):
'''find renamed files that have no changes
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after) tuples of exact matches.
'''
# Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
# We use hash() to discard fctx.data() from memory.
hashes = {}
progress = repo.ui.makeprogress(_('searching for exact renames'),
total=(len(added) + len(removed)),
unit=_('files'))
for fctx in removed:
progress.increment()
h = hash(fctx.data())
if h not in hashes:
hashes[h] = [fctx]
else:
hashes[h].append(fctx)
# For each added file, see if it corresponds to a removed file.
for fctx in added:
progress.increment()
adata = fctx.data()
h = hash(adata)
for rfctx in hashes.get(h, []):
# compare between actual file contents for exact identity
if adata == rfctx.data():
yield (rfctx, fctx)
break
# Done
progress.complete()
def _ctxdata(fctx):
# lazily load text
orig = fctx.data()
return orig, mdiff.splitnewlines(orig)
def _score(fctx, otherdata):
orig, lines = otherdata
text = fctx.data()
# mdiff.blocks() returns blocks of matching lines
# count the number of bytes in each
equal = 0
matches = mdiff.blocks(text, orig)
for x1, x2, y1, y2 in matches:
for line in lines[y1:y2]:
equal += len(line)
lengths = len(text) + len(orig)
return equal * 2.0 / lengths
def score(fctx1, fctx2):
return _score(fctx1, _ctxdata(fctx2))
def _findsimilarmatches(repo, added, removed, threshold):
'''find potentially renamed files based on similar file content
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after, score) tuples of partial matches.
'''
copies = {}
progress = repo.ui.makeprogress(_('searching for similar files'),
unit=_('files'), total=len(removed))
for r in removed:
progress.increment()
data = None
for a in added:
bestscore = copies.get(a, (None, threshold))[1]
if data is None:
data = _ctxdata(r)
myscore = _score(a, data)
if myscore > bestscore:
copies[a] = (r, myscore)
progress.complete()
for dest, v in copies.iteritems():
source, bscore = v
yield source, dest, bscore
def _dropempty(fctxs):
return [x for x in fctxs if x.size() > 0]
def findrenames(repo, added, removed, threshold):
'''find renamed files -- yields (before, after, score) tuples'''
wctx = repo[None]
pctx = wctx.p1()
# Zero length files will be frequently unrelated to each other, and
# tracking the deletion/addition of such a file will probably cause more
# harm than good. We strip them out here to avoid matching them later on.
addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)
# Find exact matches.
matchedfiles = set()
for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
matchedfiles.add(b)
yield (a.path(), b.path(), 1.0)
# If the user requested similar files to be matched, search for them also.
if threshold < 1.0:
addedfiles = [x for x in addedfiles if x not in matchedfiles]
for (a, b, score) in _findsimilarmatches(repo, addedfiles,
removedfiles, threshold):
yield (a.path(), b.path(), score)