##// END OF EJS Templates
chg: populate CHGHG if not set...
chg: populate CHGHG if not set Normally, chg determines which `hg` executable to use by first consulting the `$CHGHG` and `$HG` environment variables, and if neither are present defaults to the `hg` found in the user's `$PATH`. If built with the `HGPATHREL` compiler flag, chg will instead assume that there exists an `hg` executable in the same directory as the `chg` binary and attempt to use that. This can cause problems in situations where there are multiple actively-used Mercurial installations on the same system. When a `chg` client connects to a running command server, the server process performs some basic validation to determine whether a new command server needs to be spawned. These checks include things like checking certain "sensitive" environment variables and config sections, as well as checking whether the mtime of the extensions, hg's `__version__.py` module, and the Python interpreter have changed. Crucially, the command server doesn't explicitly check whether the executable it is running from matches the executable that the `chg` client would have otherwise invoked had there been no existing command server process. Without `HGPATHREL`, this still gets implicitly checked during the validation step, because the only way to specify an alternate hg executable (apart from `$PATH`) is via the `$CHGHG` and `$HG` environment variables, both of which are checked. With `HGPATHREL`, however, the command server has no way of knowing which hg executable the client would have run. This means that a client located at `/version_B/bin/chg` will happily connect to a command server running `/version_A/bin/hg` instead of `/version_B/bin/hg` as expected. A simple solution is to have the client set `$CHGHG` itself, which then allows the command server's environment validation to work as intended. I have tested this manually using two locally built hg installations and it seems to work with no ill effects. That said, I'm not sure how to write an automated test for this since the `chg` available to the tests isn't even built with the `HGPATHREL` compiler flag to begin with.

File last commit:

r50828:be3b545c default
r51279:cf4d2f31 stable
Show More
pybytes_deref.rs
57 lines | 1.6 KiB | application/rls-services+xml | RustLexer
use cpython::{PyBytes, Python};
use stable_deref_trait::StableDeref;
/// Safe abstraction over a `PyBytes` together with the `&[u8]` slice
/// that borrows it. Implements `Deref<Target = [u8]>`.
///
/// Calling `PyBytes::data` requires a GIL marker but we want to access the
/// data in a thread that (ideally) does not need to acquire the GIL.
/// This type allows separating the call an the use.
///
/// It also enables using a (wrapped) `PyBytes` in GIL-unaware generic code.
pub struct PyBytesDeref {
#[allow(unused)]
keep_alive: PyBytes,
/// Borrows the buffer inside `self.keep_alive`,
/// but the borrow-checker cannot express self-referential structs.
data: *const [u8],
}
impl PyBytesDeref {
pub fn new(py: Python, bytes: PyBytes) -> Self {
Self {
data: bytes.data(py),
keep_alive: bytes,
}
}
pub fn unwrap(self) -> PyBytes {
self.keep_alive
}
}
impl std::ops::Deref for PyBytesDeref {
type Target = [u8];
fn deref(&self) -> &[u8] {
// Safety: the raw pointer is valid as long as the PyBytes is still
// alive, and the returned slice borrows `self`.
unsafe { &*self.data }
}
}
unsafe impl StableDeref for PyBytesDeref {}
fn require_send<T: Send>() {}
#[allow(unused)]
fn static_assert_pybytes_is_send() {
#[allow(clippy::no_effect)]
require_send::<PyBytes>;
}
// Safety: PyBytes is Send. Raw pointers are not by default,
// but here sending one to another thread is fine since we ensure it stays
// valid.
unsafe impl Send for PyBytesDeref {}