##// END OF EJS Templates
wireprotov2: allow multiple fields to follow revision maps...
wireprotov2: allow multiple fields to follow revision maps The *data wire protocol commands emit a series of CBOR values. Because revision/delta data may be large, their data is emitted outside the map as a top-level bytestring value. Before this commit, we'd emit a single optional bytestring value after the revision descriptor map. This got the job done. But it was limiting in that we could only send a single field. And, it required the consumer to know that the presence of a key in the map implied the existence of a following bytestring value. This commit changes the encoding strategy so top-level bytestring values in the stream are explicitly denoted in a "fieldsfollowing" key. This key contains an array defining what fields that follow and the expected size of each field. By defining things this way, we can easily send N bytestring values without any ambiguity about their order. In addition, clients only need to know how to parse ``fieldsfollowing`` to know if extra values are present. Because this breaks backwards compatibility, we've bumped the version number of the wire protocol version 2 API endpoint. Differential Revision: https://phab.mercurial-scm.org/D4620

File last commit:

r38322:1fb2510c @40 default
r39839:d059cb66 default
Show More
bitmanipulation.h
51 lines | 989 B | text/x-c | CLexer
#ifndef _HG_BITMANIPULATION_H_
#define _HG_BITMANIPULATION_H_
#include <string.h>
#include "compat.h"
static inline uint32_t getbe32(const char *c)
{
const unsigned char *d = (const unsigned char *)c;
return ((((uint32_t)d[0]) << 24) | (((uint32_t)d[1]) << 16) |
(((uint32_t)d[2]) << 8) | (d[3]));
}
static inline int16_t getbeint16(const char *c)
{
const unsigned char *d = (const unsigned char *)c;
return ((d[0] << 8) | (d[1]));
}
static inline uint16_t getbeuint16(const char *c)
{
const unsigned char *d = (const unsigned char *)c;
return ((d[0] << 8) | (d[1]));
}
static inline void putbe32(uint32_t x, char *c)
{
c[0] = (x >> 24) & 0xff;
c[1] = (x >> 16) & 0xff;
c[2] = (x >> 8) & 0xff;
c[3] = (x)&0xff;
}
static inline double getbefloat64(const char *c)
{
const unsigned char *d = (const unsigned char *)c;
double ret;
int i;
uint64_t t = 0;
for (i = 0; i < 8; i++) {
t = (t << 8) + d[i];
}
memcpy(&ret, &t, sizeof(t));
return ret;
}
#endif