##// END OF EJS Templates
wireprotov2peer: stream decoded responses...
wireprotov2peer: stream decoded responses Previously, wire protocol version 2 would buffer all response data. Only once all data was received did we CBOR decode it and resolve the future associated with the command. This was obviously not desirable. In future commits that introduce large response payloads, this caused significant memory bloat and slowed down client operations due to waiting on the server. This commit refactors the response handling code so that response data can be streamed. Command response objects now contain a buffered CBOR decoder. As new data arrives, it is fed into the decoder. Decoded objects are made available to the generator as they are decoded. Because there is a separate thread processing incoming frames and feeding data into the response object, there is the potential for race conditions when mutating response objects. So a lock has been added to guard access to critical state variables. Because the generator emitting decoded objects needs to wait on those objects to become available, we've added an Event for the generator to wait on so it doesn't busy loop. This does mean there is the potential for deadlocks. And I'm pretty sure they can occur in some scenarios. We already have a handful of TODOs around this. But I've added some more. Fixing this will likely require moving the background thread receiving frames into clienthandler. We likely would have done this anyway when implementing the client bits for the SSH transport. Test output changes because the initial CBOR map holding the overall response state is now always handled internally by the response object. Differential Revision: https://phab.mercurial-scm.org/D4474

File last commit:

r38734:70a42898 default
r39597:d06834e0 default
Show More
base-revsets.txt
49 lines | 1.6 KiB | text/plain | TextLexer
# Base Revsets to be used with revsetbenchmarks.py script
#
# The goal of this file is to gather a limited amount of revsets that allow a
# good coverage of the internal revsets mechanisms. Revsets included should not
# be selected for their individual implementation, but for what they reveal of
# the internal implementation of smartsets classes (and their interactions).
#
# Use and update this file when you change internal implementation of these
# smartsets classes. Please include a comment explaining what each of your
# addition is testing. Also check if your changes to the smartset class makes
# some of the tests inadequate and replace them with a new one testing the same
# behavior.
#
# If you want to benchmark revsets predicate itself, check 'all-revsets.txt'.
#
# The current content of this file is currently likely not reaching this goal
# entirely, feel free, to audit its content and comment on each revset to
# highlight what internal mechanisms they test.
all()
draft()
::tip
draft() and ::tip
::tip and draft()
0::tip
roots(0::tip)
author(lmoscovicz)
author(mpm)
author(lmoscovicz) or author(mpm)
author(mpm) or author(lmoscovicz)
tip:0
0::
# those two `roots(...)` inputs are close to what phase movement use.
roots((tip~100::) - (tip~100::tip))
roots((0::) - (0::tip))
42:68 and roots(42:tip)
::p1(p1(tip))::
public()
:10000 and public()
draft()
:10000 and draft()
roots((0:tip)::)
(not public() - obsolete())
(_intlist('20000\x0020001')) and merge()
parents(20000)
(20000::) - (20000)
# The one below is used by rebase
(children(ancestor(tip~5, tip)) and ::(tip~5))::
heads(commonancestors(last(head(), 2)))