##// END OF EJS Templates
changegroup: cg3 has two empty groups *after* manifests...
changegroup: cg3 has two empty groups *after* manifests changegroup.getchunks() determines the end of the stream by looking for an empty chunk group (two consecutive empty chunks). It ignores empty groups in the first two groups. Changegroup 3 introduced an empty chunk between the manifests and the files, which confuses getchunks(). Since it comes after the first two, getchunks() will stop there. Fix by rewriting getchunks so it first counts two groups (empty or not) and then keeps antostarts counting empty groups. With this counting, changegroup 1 and 2 have exactly one empty group after the first two groups, while changegroup 3 has two (one for directories and one for files). It's a little hard to test this at this point, but I have verified that this patch fixes narrowhg (which was broken before this patch). Also, future patches will fix "hg strip" with treemanifests, and once that's done, getchunks() will be tested through tests of "hg strip".

File last commit:

r27373:84784f83 default
r27920:da5f2336 stable
Show More
bundles.txt
97 lines | 3.3 KiB | text/plain | TextLexer
Bundles
=======
A bundle is a container for repository data.
Bundles are used as standalone files as well as the interchange format
over the wire protocol used when two Mercurial peers communicate with
each other.
Headers
-------
Bundles produced since Mercurial 0.7 (September 2005) have a 4 byte
header identifying the major bundle type. The header always begins with
``HG`` and the follow 2 bytes indicate the bundle type/version. Some
bundle types have additional data after this 4 byte header.
The following sections describe each bundle header/type.
HG10
----
``HG10`` headers indicate a *changegroup bundle*. This is the original
bundle format, so it is sometimes referred to as *bundle1*. It has been
present since version 0.7 (released September 2005).
This header is followed by 2 bytes indicating the compression algorithm
used for data that follows. All subsequent data following this
compression identifier is compressed according to the algorithm/method
specified.
Supported algorithms include the following.
``BZ``
*bzip2* compression.
Bzip2 compressors emit a leading ``BZ`` header. Mercurial uses this
leading ``BZ`` as part of the bundle header. Therefore consumers
of bzip2 bundles need to *seed* the bzip2 decompressor with ``BZ`` or
seek the input stream back to the beginning of the algorithm component
of the bundle header so that decompressor input is valid. This behavior
is unique among supported compression algorithms.
Supported since version 0.7 (released December 2006).
``GZ``
*zlib* compression.
Supported since version 0.9.2 (released December 2006).
``UN``
*Uncompressed* or no compression. Unmodified changegroup data follows.
Supported since version 0.9.2 (released December 2006).
3rd party extensions may implement their own compression. However, no
authority reserves values for their compression algorithm identifiers.
HG2X
----
``HG2X`` headers (where ``X`` is any value) denote a *bundle2* bundle.
Bundle2 bundles are a container format for various kinds of repository
data and capabilities, beyond changegroup data (which was the only data
supported by ``HG10`` bundles.
``HG20`` is currently the only defined bundle2 version.
The ``HG20`` format is not yet documented here. See the inline comments
in ``mercurial/exchange.py`` for now.
Initial ``HG20`` support was added in Mercurial 3.0 (released May
2014). However, bundle2 bundles were hidden behind an experimental flag
until version 3.5 (released August 2015), when they were enabled in the
wire protocol. Various commands (including ``hg bundle``) did not
support generating bundle2 files until Mercurial 3.6 (released November
2015).
HGS1
----
*Experimental*
A ``HGS1`` header indicates a *streaming clone bundle*. This is a bundle
that contains raw revlog data from a repository store. (Typically revlog
data is exchanged in the form of changegroups.)
The purpose of *streaming clone bundles* are to *clone* repository data
very efficiently.
The ``HGS1`` header is always followed by 2 bytes indicating a
compression algorithm of the data that follows. Only ``UN``
(uncompressed data) is currently allowed.
``HGS1UN`` support was added as an experimental feature in version 3.6
(released November 2015) as part of the initial offering of the *clone
bundles* feature.