##// END OF EJS Templates
setup: exclude some internal UCRT files...
setup: exclude some internal UCRT files When attempting to build the Inno installer locally, I was getting several file not found errors when py2exe was crawling DLL dependencies. The missing DLLs appear to be "internal" DLLs used by the Universal C Runtime (UCRT). In many cases, the missing DLLs don't appear to exist on my system at all! Some of the DLLs have version numbers that appear to be N+1 of what the existing version number is. Maybe the "public" UCRT DLLs are probing for version N+1 at load time and py2exe is picking these up? Who knows. This commit adds the non-public UCRT DLLs as found by py2exe on my system to the excluded DLLs set. After this change, I'm able to produce an Inno installer with an appropriate set of DLLs. Differential Revision: https://phab.mercurial-scm.org/D6065

File last commit:

r41866:9060af28 default
r42018:db3098d0 default
Show More
dagops.rs
140 lines | 4.3 KiB | application/rls-services+xml | RustLexer
// dagops.rs
//
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Miscellaneous DAG operations
//!
//! # Terminology
//! - By *relative heads* of a collection of revision numbers (`Revision`),
//! we mean those revisions that have no children among the collection.
//! - Similarly *relative roots* of a collection of `Revision`, we mean
//! those whose parents, if any, don't belong to the collection.
use super::{Graph, GraphError, Revision, NULL_REVISION};
use std::collections::HashSet;
fn remove_parents(
graph: &impl Graph,
rev: Revision,
set: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION {
set.remove(parent);
}
}
Ok(())
}
/// Relative heads out of some revisions, passed as an iterator.
///
/// These heads are defined as those revisions that have no children
/// among those emitted by the iterator.
///
/// # Performance notes
/// Internally, this clones the iterator, and builds a `HashSet` out of it.
///
/// This function takes an `Iterator` instead of `impl IntoIterator` to
/// guarantee that cloning the iterator doesn't result in cloning the full
/// construct it comes from.
pub fn heads<'a>(
graph: &impl Graph,
iter_revs: impl Clone + Iterator<Item = &'a Revision>,
) -> Result<HashSet<Revision>, GraphError> {
let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect();
heads.remove(&NULL_REVISION);
for rev in iter_revs {
if *rev != NULL_REVISION {
remove_parents(graph, *rev, &mut heads)?;
}
}
Ok(heads)
}
/// Retain in `revs` only its relative heads.
///
/// This is an in-place operation, so that control of the incoming
/// set is left to the caller.
/// - a direct Python binding would probably need to build its own `HashSet`
/// from an incoming iterable, even if its sole purpose is to extract the
/// heads.
/// - a Rust caller can decide whether cloning beforehand is appropriate
///
/// # Performance notes
/// Internally, this function will store a full copy of `revs` in a `Vec`.
pub fn retain_heads(
graph: &impl Graph,
revs: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
revs.remove(&NULL_REVISION);
// we need to construct an iterable copy of revs to avoid itering while
// mutating
let as_vec: Vec<Revision> = revs.iter().cloned().collect();
for rev in as_vec {
if rev != NULL_REVISION {
remove_parents(graph, rev, revs)?;
}
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::SampleGraph;
/// Apply `retain_heads()` to the given slice and return as a sorted `Vec`
fn retain_heads_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let mut revs: HashSet<Revision> = revs.iter().cloned().collect();
retain_heads(graph, &mut revs)?;
let mut as_vec: Vec<Revision> = revs.iter().cloned().collect();
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_retain_heads() -> Result<(), GraphError> {
assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
/// Apply `heads()` to the given slice and return as a sorted `Vec`
fn heads_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let heads = heads(graph, revs.iter())?;
let mut as_vec: Vec<Revision> = heads.iter().cloned().collect();
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_heads() -> Result<(), GraphError> {
assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
}