##// END OF EJS Templates
bundle2: implement consume() API on unbundlepart...
bundle2: implement consume() API on unbundlepart We want bundle parts to not be seekable by default. That means eliminating the generic seek() method. A common pattern in bundle2.py is to seek to the end of the part data. This is mainly used by the part iteration code to ensure the underlying stream is advanced to the next bundle part. In this commit, we establish a dedicated API for consuming a bundle2 part data. We switch users of seek() to it. The old implementation of seek(0, os.SEEK_END) would effectively call self.read(). The new implementation calls self.read(32768) in a loop. The old implementation would therefore assemble a buffer to hold all remaining data being seeked over. For seeking over large bundle parts, this would involve a large allocation and a lot of overhead to collect intermediate data! This overhead can be seen in the results for `hg perfbundleread`: ! bundle2 iterparts() ! wall 10.891305 comb 10.820000 user 7.990000 sys 2.830000 (best of 3) ! wall 8.070791 comb 8.060000 user 7.180000 sys 0.880000 (best of 3) ! bundle2 part seek() ! wall 12.991478 comb 10.390000 user 7.720000 sys 2.670000 (best of 3) ! wall 10.370142 comb 10.350000 user 7.430000 sys 2.920000 (best of 3) Of course, skipping over large payload data isn't likely very common. So I doubt the performance wins will be observed in the wild. Differential Revision: https://phab.mercurial-scm.org/D1388

File last commit:

r30895:c32454d6 default
r35111:db503852 default
Show More
pool.h
56 lines | 1.5 KiB | text/x-c | CLexer
/**
* Copyright (c) 2016-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h> /* size_t */
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
Create a thread pool with at most `numThreads` threads.
`numThreads` must be at least 1.
The maximum number of queued jobs before blocking is `queueSize`.
`queueSize` must be at least 1.
@return : The POOL_ctx pointer on success else NULL.
*/
POOL_ctx *POOL_create(size_t numThreads, size_t queueSize);
/*! POOL_free() :
Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx *ctx);
/*! POOL_function :
The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void *);
/*! POOL_add_function :
The function type for a generic thread pool add function.
*/
typedef void (*POOL_add_function)(void *, POOL_function, void *);
/*! POOL_add() :
Add the job `function(opaque)` to the thread pool.
Possibly blocks until there is room in the queue.
Note : The function may be executed asynchronously, so `opaque` must live until the function has been completed.
*/
void POOL_add(void *ctx, POOL_function function, void *opaque);
#if defined (__cplusplus)
}
#endif
#endif