##// END OF EJS Templates
changegroup: remove reordering control (BC)...
changegroup: remove reordering control (BC) This logic - including the experimental bundle.reorder option - was originally added in a8e3931e3fb5 in 2011 and then later ported to changegroup.py. The intent of this option and associated logic is to control the ordering of revisions in deltagroups in changegroups. At the time it was implemented, only changegroup version 1 existed and generaldelta revlogs were just coming into the world. Changegroup version 1 requires that deltas be made against the last revision sent over the wire. Used with generaldelta, this created an impedance mismatch of sorts and resulted in changegroup producers spending a lot of time recomputing deltas. Revision reordering was introduced so outgoing revisions would be sent in "generaldelta order" and producers would be able to reuse internal deltas from storage. Later on, we introduced changegroup version 2. It supported denoting which revision a delta was against. So we no longer needed to sort outgoing revisions to ensure optimal delta generation from the producer. So, subsequent changegroup versions disabled reordering. We also later made the changelog not store deltas by default. And we also made the changelog send out deltas in storage order. Why we do this for changelog, I'm not sure. Maybe we want to preserve revision order across clones? It doesn't really matter for this commit. Fast forward to 2018. We want to abstract storage backends. And having changegroup code require knowledge about how deltas are stored internally interferes with that goal. This commit removes reordering control from changegroup generation. After this commit, the reordering behavior is: * The changelog is always sent out in storage order (no behavior change). * Non-changelog generaldelta revlogs are reordered to always be in DAG topological order (previously, generaldelta revlogs would be emitted in storage order for version 2 and 3 changegroups). * Non-changelog non-generaldelta revlogs are sent in storage order (no behavior change). * There exists no config option to override behavior. The big difference here is that generaldelta revlogs now *always* have their revisions sorted in DAG order before going out over the wire. This behavior was previously only done for changegroup version 1. Version 2 and version 3 changegroups disabled reordering because the interchange format supported encoding arbitrary delta parents, so reordering wasn't strictly necessary. I can think of a few significant implications for this change. Because changegroup receivers will now see non-changelog revisions in DAG order instead of storage order, the internal storage order of manifests and files may differ substantially between producer and consumer. I don't think this matters that much, since the storage order of manifests and files is largely hidden from users. Only the storage order of changelog matters (because `hg log` shows the changelog in storage order). I don't think there should be any controversy here. The reordering of revisions has implications for changegroup producers. Previously, generaldelta revlogs would be emitted in storage order. And in the common case, the internally-stored delta could effectively be copied from disk into the deltagroup delta. This meant that emitting delta groups for generaldelta revlogs would be mostly linear read I/O. This is desirable for performance. With us now reordering generaldelta revlog revisions in DAG order, the read operations may use more random I/O instead of sequential I/O. This could result in performance loss. But with the prevalence of SSDs and fast random I/O, I'm not too worried. (Note: the optimal emission order for revlogs is actually delta encoding order. But the changegroup code wasn't doing that before or after this change. We could potentially implement that in a later commit.) Changegroups in DAG order will have implications for receivers. Previously, receiving storage order might mean seeing a number of interleaved branches. This would mean long delta chains, sparse I/O, and possibly more fulltext revisions instead of deltas, blowing up storage storage. (This is the same set of problems that sparse revlogs aims to address.) With the producer now sending revisions in DAG order, the receiver also stores revisions in DAG order. That means revisions for the same DAG branch are all grouped together. And this should yield better storage outcomes. In other words, sending the reordered changegroup allows the receiver to have better storage order and for the producer to not propagate its (possibly sub-optimal) internal storage order. On the mozilla-unified repository, this change influences bundle generation: $ hg bundle -t none-v2 -a before: time: real 355.680 secs (user 256.790+0.000 sys 16.820+0.000) after: time: real 382.950 secs (user 281.700+0.000 sys 17.690+0.000) before: 7,150,228,967 bytes (uncompressed) after: 7,041,556,273 bytes (uncompressed) before: 1,669,063,234 bytes (zstd l=3) after: 1,628,598,830 bytes (zstd l=3) $ hg unbundle before: time: real 511.910 secs (user 466.750+0.000 sys 32.680+0.000) after: time: real 487.790 secs (user 443.940+0.000 sys 30.840+0.000) 00manifest.d size: source: 274,924,292 bytes before: 304,741,626 bytes after: 245,252,087 bytes .hg/store total file size: source: 2,649,133,490 before: 2,680,888,130 after: 2,627,875,673 We see the bundle size drop. That's probably because if a revlog internally isn't storing a delta, it will choose to delta against the last emitted revision. And on repos with interleaved branches (like mozilla-unified), the previous revision could be an unrelated branch and therefore be a large delta. But with this patch, the previous revision is likely p1 or p2 and a delta should be small. We also see the manifest size drop by ~50 MB. It's worth noting that the manifest actually *increased* in size by ~25 MB in the old strategy and decreased ~25 MB from its source in the new strategy. Again, my explanation for this is that the DAG ordering in the changegroup is resulting in better grouping of revisions in the receiver, which results in more compact delta chains and higher storage efficiency. Unbundle time also dropped. I suspect this is due to the revlog having to work less to compute deltas since the incoming deltas are more optimal. i.e. the receiver spends less time resolving fulltext revisions as incoming deltas bounce around between DAG branches and delta chains. We also see bundle generation time increase. This is not desirable. However, the regression is only significant on the original repository: if we generate a bundle from the repository created from the new, always reordered bundles, we're close to baseline (if not at it with expected noise): $ hg bundle -t none-v2 -a before (original): time: real 355.680 secs (user 256.790+0.000 sys 16.820+0.000) after (original): time: real 382.950 secs (user 281.700+0.000 sys 17.690+0.000) after (new repo): time: real 362.280 secs (user 260.300+0.000 sys 17.700+0.000) This regression is a bit worrying because it will impact serving canonical repositories (that don't have optimal internal storage unless they are reordered - possibly as part of running `hg debugupgraderepo`). However, this regression will only be noticed by very large changegroups. And I'm guessing/hoping that any repository that large is using clonebundles to mitigate server load. Again, sending DAG order isn't the optimal send order for servers: sending in storage-delta order is. But in order to enable storage-optimal send order, we'll need a storage API that handles sorting. Future commits will introduce such an API. Differential Revision: https://phab.mercurial-scm.org/D4721

File last commit:

r36391:0147a473 default
r39897:db5501d9 default
Show More
requirements.txt
131 lines | 4.1 KiB | text/plain | TextLexer
Repositories contain a file (``.hg/requires``) containing a list of
features/capabilities that are *required* for clients to interface
with the repository. This file has been present in Mercurial since
version 0.9.2 (released December 2006).
One of the first things clients do when opening a repository is read
``.hg/requires`` and verify that all listed requirements are supported,
aborting if not. Requirements are therefore a strong mechanism to
prevent incompatible clients from reading from unknown repository
formats or even corrupting them by writing to them.
Extensions may add requirements. When they do this, clients not running
an extension will be unable to read from repositories.
The following sections describe the requirements defined by the
Mercurial core distribution.
revlogv1
========
When present, revlogs are version 1 (RevlogNG). RevlogNG was introduced
in 2006. The ``revlogv1`` requirement has been enabled by default
since the ``requires`` file was introduced in Mercurial 0.9.2.
If this requirement is not present, version 0 revlogs are assumed.
store
=====
The *store* repository layout should be used.
This requirement has been enabled by default since the ``requires`` file
was introduced in Mercurial 0.9.2.
fncache
=======
The *fncache* repository layout should be used.
The *fncache* layout hash encodes filenames with long paths and
encodes reserved filenames.
This requirement is enabled by default when the *store* requirement is
enabled (which is the default behavior). It was introduced in Mercurial
1.1 (released December 2008).
shared
======
Denotes that the store for a repository is shared from another location
(defined by the ``.hg/sharedpath`` file).
This requirement is set when a repository is created via :hg:`share`.
The requirement was added in Mercurial 1.3 (released July 2009).
relshared
=========
Derivative of ``shared``; the location of the store is relative to the
store of this repository.
This requirement is set when a repository is created via :hg:`share`
using the ``--relative`` option.
The requirement was added in Mercurial 4.2 (released May 2017).
dotencode
=========
The *dotencode* repository layout should be used.
The *dotencode* layout encodes the first period or space in filenames
to prevent issues on OS X and Windows.
This requirement is enabled by default when the *store* requirement
is enabled (which is the default behavior). It was introduced in
Mercurial 1.7 (released November 2010).
parentdelta
===========
Denotes a revlog delta encoding format that was experimental and
replaced by *generaldelta*. It should not be seen in the wild because
it was never enabled by default.
This requirement was added in Mercurial 1.7 and removed in Mercurial
1.9.
generaldelta
============
Revlogs should be created with the *generaldelta* flag enabled. The
generaldelta flag will cause deltas to be encoded against a parent
revision instead of the previous revision in the revlog.
Support for this requirement was added in Mercurial 1.9 (released
July 2011). The requirement was disabled on new repositories by
default until Mercurial 3.7 (released February 2016).
manifestv2
==========
Denotes that version 2 of manifests are being used.
Support for this requirement was added in Mercurial 3.4 (released
May 2015). The new format failed to meet expectations and support
for the format and requirement were removed in Mercurial 4.6
(released May 2018) since the feature never graduated frome experiment
status.
treemanifest
============
Denotes that tree manifests are being used. Tree manifests are
one manifest per directory (as opposed to a single flat manifest).
Support for this requirement was added in Mercurial 3.4 (released
August 2015). The requirement is currently experimental and is
disabled by default.
exp-sparse
==========
The working directory is sparse (only contains a subset of files).
Support for this requirement was added in Mercurial 4.3 (released
August 2017). This requirement and feature are experimental and may
disappear in a future Mercurial release. The requirement will only
be present on repositories that have opted in to a sparse working
directory.