##// END OF EJS Templates
rust: add Vfs trait...
rust: add Vfs trait This will allow for the use of multiple vfs like in the Python implementation, as well as hiding the details of the upcoming Python vfs wrapper to hg-core.

File last commit:

r52360:68ed56ba stable
r52761:db7dbe6f default
Show More
revlog.rs
1239 lines | 41.8 KiB | application/rls-services+xml | RustLexer
// revlog.rs
//
// Copyright 2019-2020 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
use crate::{
conversion::{rev_pyiter_collect, rev_pyiter_collect_or_else},
utils::{node_from_py_bytes, node_from_py_object},
PyRevision,
};
use cpython::{
buffer::{Element, PyBuffer},
exc::{IndexError, ValueError},
ObjectProtocol, PyBool, PyBytes, PyClone, PyDict, PyErr, PyInt, PyList,
PyModule, PyObject, PyResult, PySet, PyString, PyTuple, Python,
PythonObject, ToPyObject, UnsafePyLeaked,
};
use hg::{
errors::HgError,
index::{
IndexHeader, Phase, RevisionDataParams, SnapshotsCache,
INDEX_ENTRY_SIZE,
},
nodemap::{Block, NodeMapError, NodeTree as CoreNodeTree},
revlog::{nodemap::NodeMap, Graph, NodePrefix, RevlogError, RevlogIndex},
BaseRevision, Node, Revision, UncheckedRevision, NULL_REVISION,
};
use std::{cell::RefCell, collections::HashMap};
use vcsgraph::graph::Graph as VCSGraph;
pub struct PySharedIndex {
/// The underlying hg-core index
pub(crate) inner: &'static hg::index::Index,
}
/// Return a Struct implementing the Graph trait
pub(crate) fn py_rust_index_to_graph(
py: Python,
index: PyObject,
) -> PyResult<UnsafePyLeaked<PySharedIndex>> {
let midx = index.extract::<Index>(py)?;
let leaked = midx.index(py).leak_immutable();
// Safety: we don't leak the "faked" reference out of the `UnsafePyLeaked`
Ok(unsafe { leaked.map(py, |idx| PySharedIndex { inner: idx }) })
}
impl Clone for PySharedIndex {
fn clone(&self) -> Self {
Self { inner: self.inner }
}
}
impl Graph for PySharedIndex {
#[inline(always)]
fn parents(&self, rev: Revision) -> Result<[Revision; 2], hg::GraphError> {
self.inner.parents(rev)
}
}
impl VCSGraph for PySharedIndex {
#[inline(always)]
fn parents(
&self,
rev: BaseRevision,
) -> Result<vcsgraph::graph::Parents, vcsgraph::graph::GraphReadError>
{
// FIXME This trait should be reworked to decide between Revision
// and UncheckedRevision, get better errors names, etc.
match Graph::parents(self, Revision(rev)) {
Ok(parents) => {
Ok(vcsgraph::graph::Parents([parents[0].0, parents[1].0]))
}
Err(hg::GraphError::ParentOutOfRange(rev)) => {
Err(vcsgraph::graph::GraphReadError::KeyedInvalidKey(rev.0))
}
}
}
}
impl RevlogIndex for PySharedIndex {
fn len(&self) -> usize {
self.inner.len()
}
fn node(&self, rev: Revision) -> Option<&Node> {
self.inner.node(rev)
}
}
py_class!(pub class Index |py| {
@shared data index: hg::index::Index;
data nt: RefCell<Option<CoreNodeTree>>;
data docket: RefCell<Option<PyObject>>;
// Holds a reference to the mmap'ed persistent nodemap data
data nodemap_mmap: RefCell<Option<PyBuffer>>;
// Holds a reference to the mmap'ed persistent index data
data index_mmap: RefCell<Option<PyBuffer>>;
data head_revs_py_list: RefCell<Option<PyList>>;
data head_node_ids_py_list: RefCell<Option<PyList>>;
def __new__(
_cls,
data: PyObject,
default_header: u32,
) -> PyResult<Self> {
Self::new(py, data, default_header)
}
/// Compatibility layer used for Python consumers needing access to the C index
///
/// Only use case so far is `scmutil.shortesthexnodeidprefix`,
/// that may need to build a custom `nodetree`, based on a specified revset.
/// With a Rust implementation of the nodemap, we will be able to get rid of
/// this, by exposing our own standalone nodemap class,
/// ready to accept `Index`.
/* def get_cindex(&self) -> PyResult<PyObject> {
Ok(self.cindex(py).borrow().inner().clone_ref(py))
}
*/
// Index API involving nodemap, as defined in mercurial/pure/parsers.py
/// Return Revision if found, raises a bare `error.RevlogError`
/// in case of ambiguity, same as C version does
def get_rev(&self, node: PyBytes) -> PyResult<Option<PyRevision>> {
let opt = self.get_nodetree(py)?.borrow();
let nt = opt.as_ref().unwrap();
let ridx = &*self.index(py).borrow();
let node = node_from_py_bytes(py, &node)?;
let rust_rev =
nt.find_bin(ridx, node.into()).map_err(|e| nodemap_error(py, e))?;
Ok(rust_rev.map(Into::into))
}
/// same as `get_rev()` but raises a bare `error.RevlogError` if node
/// is not found.
///
/// No need to repeat `node` in the exception, `mercurial/revlog.py`
/// will catch and rewrap with it
def rev(&self, node: PyBytes) -> PyResult<PyRevision> {
self.get_rev(py, node)?.ok_or_else(|| revlog_error(py))
}
/// return True if the node exist in the index
def has_node(&self, node: PyBytes) -> PyResult<bool> {
// TODO OPTIM we could avoid a needless conversion here,
// to do when scaffolding for pure Rust switch is removed,
// as `get_rev()` currently does the necessary assertions
self.get_rev(py, node).map(|opt| opt.is_some())
}
/// find length of shortest hex nodeid of a binary ID
def shortest(&self, node: PyBytes) -> PyResult<usize> {
let opt = self.get_nodetree(py)?.borrow();
let nt = opt.as_ref().unwrap();
let idx = &*self.index(py).borrow();
match nt.unique_prefix_len_node(idx, &node_from_py_bytes(py, &node)?)
{
Ok(Some(l)) => Ok(l),
Ok(None) => Err(revlog_error(py)),
Err(e) => Err(nodemap_error(py, e)),
}
}
def partialmatch(&self, node: PyObject) -> PyResult<Option<PyBytes>> {
let opt = self.get_nodetree(py)?.borrow();
let nt = opt.as_ref().unwrap();
let idx = &*self.index(py).borrow();
let node_as_string = if cfg!(feature = "python3-sys") {
node.cast_as::<PyString>(py)?.to_string(py)?.to_string()
}
else {
let node = node.extract::<PyBytes>(py)?;
String::from_utf8_lossy(node.data(py)).to_string()
};
let prefix = NodePrefix::from_hex(&node_as_string)
.map_err(|_| PyErr::new::<ValueError, _>(
py, format!("Invalid node or prefix '{}'", node_as_string))
)?;
nt.find_bin(idx, prefix)
// TODO make an inner API returning the node directly
.map(|opt| opt.map(
|rev| PyBytes::new(py, idx.node(rev).unwrap().as_bytes())))
.map_err(|e| nodemap_error(py, e))
}
/// append an index entry
def append(&self, tup: PyTuple) -> PyResult<PyObject> {
if tup.len(py) < 8 {
// this is better than the panic promised by tup.get_item()
return Err(
PyErr::new::<IndexError, _>(py, "tuple index out of range"))
}
let node_bytes = tup.get_item(py, 7).extract(py)?;
let node = node_from_py_object(py, &node_bytes)?;
let rev = self.len(py)? as BaseRevision;
// This is ok since we will just add the revision to the index
let rev = Revision(rev);
self.index(py)
.borrow_mut()
.append(py_tuple_to_revision_data_params(py, tup)?)
.unwrap();
let idx = &*self.index(py).borrow();
self.get_nodetree(py)?.borrow_mut().as_mut().unwrap()
.insert(idx, &node, rev)
.map_err(|e| nodemap_error(py, e))?;
Ok(py.None())
}
def __delitem__(&self, key: PyObject) -> PyResult<()> {
// __delitem__ is both for `del idx[r]` and `del idx[r1:r2]`
let start = if let Ok(rev) = key.extract(py) {
UncheckedRevision(rev)
} else {
let start = key.getattr(py, "start")?;
UncheckedRevision(start.extract(py)?)
};
let start = self.index(py)
.borrow()
.check_revision(start)
.ok_or_else(|| {
nodemap_error(py, NodeMapError::RevisionNotInIndex(start))
})?;
self.index(py).borrow_mut().remove(start).unwrap();
let mut opt = self.get_nodetree(py)?.borrow_mut();
let nt = opt.as_mut().unwrap();
nt.invalidate_all();
self.fill_nodemap(py, nt)?;
Ok(())
}
//
// Index methods previously reforwarded to C index (tp_methods)
// Same ordering as in revlog.c
//
/// return the gca set of the given revs
def ancestors(&self, *args, **_kw) -> PyResult<PyObject> {
let rust_res = self.inner_ancestors(py, args)?;
Ok(rust_res)
}
/// return the heads of the common ancestors of the given revs
def commonancestorsheads(&self, *args, **_kw) -> PyResult<PyObject> {
let rust_res = self.inner_commonancestorsheads(py, args)?;
Ok(rust_res)
}
/// Clear the index caches and inner py_class data.
/// It is Python's responsibility to call `update_nodemap_data` again.
def clearcaches(&self) -> PyResult<PyObject> {
self.nt(py).borrow_mut().take();
self.docket(py).borrow_mut().take();
self.nodemap_mmap(py).borrow_mut().take();
self.head_revs_py_list(py).borrow_mut().take();
self.head_node_ids_py_list(py).borrow_mut().take();
self.index(py).borrow().clear_caches();
Ok(py.None())
}
/// return the raw binary string representing a revision
def entry_binary(&self, *args, **_kw) -> PyResult<PyObject> {
let rindex = self.index(py).borrow();
let rev = UncheckedRevision(args.get_item(py, 0).extract(py)?);
let rust_bytes = rindex.check_revision(rev).and_then(
|r| rindex.entry_binary(r))
.ok_or_else(|| rev_not_in_index(py, rev))?;
let rust_res = PyBytes::new(py, rust_bytes).into_object();
Ok(rust_res)
}
/// return a binary packed version of the header
def pack_header(&self, *args, **_kw) -> PyResult<PyObject> {
let rindex = self.index(py).borrow();
let packed = rindex.pack_header(args.get_item(py, 0).extract(py)?);
let rust_res = PyBytes::new(py, &packed).into_object();
Ok(rust_res)
}
/// compute phases
def computephasesmapsets(&self, *args, **_kw) -> PyResult<PyObject> {
let py_roots = args.get_item(py, 0).extract::<PyDict>(py)?;
let rust_res = self.inner_computephasesmapsets(py, py_roots)?;
Ok(rust_res)
}
/// reachableroots
def reachableroots2(&self, *args, **_kw) -> PyResult<PyObject> {
let rust_res = self.inner_reachableroots2(
py,
UncheckedRevision(args.get_item(py, 0).extract(py)?),
args.get_item(py, 1),
args.get_item(py, 2),
args.get_item(py, 3).extract(py)?,
)?;
Ok(rust_res)
}
/// get head revisions
def headrevs(&self) -> PyResult<PyObject> {
let rust_res = self.inner_headrevs(py)?;
Ok(rust_res)
}
/// get head nodeids
def head_node_ids(&self) -> PyResult<PyObject> {
let rust_res = self.inner_head_node_ids(py)?;
Ok(rust_res)
}
/// get diff in head revisions
def headrevsdiff(&self, *args, **_kw) -> PyResult<PyObject> {
let rust_res = self.inner_headrevsdiff(
py,
&args.get_item(py, 0),
&args.get_item(py, 1))?;
Ok(rust_res)
}
/// get filtered head revisions
def headrevsfiltered(&self, *args, **_kw) -> PyResult<PyObject> {
let rust_res = self.inner_headrevsfiltered(py, &args.get_item(py, 0))?;
Ok(rust_res)
}
/// True if the object is a snapshot
def issnapshot(&self, *args, **_kw) -> PyResult<bool> {
let index = self.index(py).borrow();
let result = index
.is_snapshot(UncheckedRevision(args.get_item(py, 0).extract(py)?))
.map_err(|e| {
PyErr::new::<cpython::exc::ValueError, _>(py, e.to_string())
})?;
Ok(result)
}
/// Gather snapshot data in a cache dict
def findsnapshots(&self, *args, **_kw) -> PyResult<PyObject> {
let index = self.index(py).borrow();
let cache: PyDict = args.get_item(py, 0).extract(py)?;
// this methods operates by setting new values in the cache,
// hence we will compare results by letting the C implementation
// operate over a deepcopy of the cache, and finally compare both
// caches.
let c_cache = PyDict::new(py);
for (k, v) in cache.items(py) {
c_cache.set_item(py, k, PySet::new(py, v)?)?;
}
let start_rev = UncheckedRevision(args.get_item(py, 1).extract(py)?);
let end_rev = UncheckedRevision(args.get_item(py, 2).extract(py)?);
let mut cache_wrapper = PySnapshotsCache{ py, dict: cache };
index.find_snapshots(
start_rev,
end_rev,
&mut cache_wrapper,
).map_err(|_| revlog_error(py))?;
Ok(py.None())
}
/// determine revisions with deltas to reconstruct fulltext
def deltachain(&self, *args, **_kw) -> PyResult<PyObject> {
let index = self.index(py).borrow();
let rev = args.get_item(py, 0).extract::<BaseRevision>(py)?.into();
let stop_rev =
args.get_item(py, 1).extract::<Option<BaseRevision>>(py)?;
let rev = index.check_revision(rev).ok_or_else(|| {
nodemap_error(py, NodeMapError::RevisionNotInIndex(rev))
})?;
let stop_rev = if let Some(stop_rev) = stop_rev {
let stop_rev = UncheckedRevision(stop_rev);
Some(index.check_revision(stop_rev).ok_or_else(|| {
nodemap_error(py, NodeMapError::RevisionNotInIndex(stop_rev))
})?)
} else {None};
let using_general_delta = args.get_item(py, 2)
.extract::<Option<u32>>(py)?
.map(|i| i != 0);
let (chain, stopped) = index.delta_chain(
rev, stop_rev, using_general_delta
).map_err(|e| {
PyErr::new::<cpython::exc::ValueError, _>(py, e.to_string())
})?;
let chain: Vec<_> = chain.into_iter().map(|r| r.0).collect();
Ok(
PyTuple::new(
py,
&[
chain.into_py_object(py).into_object(),
stopped.into_py_object(py).into_object()
]
).into_object()
)
}
/// slice planned chunk read to reach a density threshold
def slicechunktodensity(&self, *args, **_kw) -> PyResult<PyObject> {
let rust_res = self.inner_slicechunktodensity(
py,
args.get_item(py, 0),
args.get_item(py, 1).extract(py)?,
args.get_item(py, 2).extract(py)?
)?;
Ok(rust_res)
}
// index_sequence_methods and index_mapping_methods.
//
// Since we call back through the high level Python API,
// there's no point making a distinction between index_get
// and index_getitem.
// gracinet 2023: this above is no longer true for the pure Rust impl
def __len__(&self) -> PyResult<usize> {
self.len(py)
}
def __getitem__(&self, key: PyObject) -> PyResult<PyObject> {
let rust_res = self.inner_getitem(py, key.clone_ref(py))?;
Ok(rust_res)
}
def __contains__(&self, item: PyObject) -> PyResult<bool> {
// ObjectProtocol does not seem to provide contains(), so
// this is an equivalent implementation of the index_contains()
// defined in revlog.c
match item.extract::<i32>(py) {
Ok(rev) => {
Ok(rev >= -1 && rev < self.len(py)? as BaseRevision)
}
Err(_) => {
let item_bytes: PyBytes = item.extract(py)?;
let rust_res = self.has_node(py, item_bytes)?;
Ok(rust_res)
}
}
}
def nodemap_data_all(&self) -> PyResult<PyBytes> {
self.inner_nodemap_data_all(py)
}
def nodemap_data_incremental(&self) -> PyResult<PyObject> {
self.inner_nodemap_data_incremental(py)
}
def update_nodemap_data(
&self,
docket: PyObject,
nm_data: PyObject
) -> PyResult<PyObject> {
self.inner_update_nodemap_data(py, docket, nm_data)
}
@property
def entry_size(&self) -> PyResult<PyInt> {
let rust_res: PyInt = INDEX_ENTRY_SIZE.to_py_object(py);
Ok(rust_res)
}
@property
def rust_ext_compat(&self) -> PyResult<PyInt> {
// will be entirely removed when the Rust index yet useful to
// implement in Rust to detangle things when removing `self.cindex`
let rust_res: PyInt = 1.to_py_object(py);
Ok(rust_res)
}
@property
def is_rust(&self) -> PyResult<PyBool> {
Ok(false.to_py_object(py))
}
});
/// Take a (potentially) mmap'ed buffer, and return the underlying Python
/// buffer along with the Rust slice into said buffer. We need to keep the
/// Python buffer around, otherwise we'd get a dangling pointer once the buffer
/// is freed from Python's side.
///
/// # Safety
///
/// The caller must make sure that the buffer is kept around for at least as
/// long as the slice.
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn mmap_keeparound(
py: Python,
data: PyObject,
) -> PyResult<(
PyBuffer,
Box<dyn std::ops::Deref<Target = [u8]> + Send + Sync + 'static>,
)> {
let buf = PyBuffer::get(py, &data)?;
let len = buf.item_count();
// Build a slice from the mmap'ed buffer data
let cbuf = buf.buf_ptr();
let bytes = if std::mem::size_of::<u8>() == buf.item_size()
&& buf.is_c_contiguous()
&& u8::is_compatible_format(buf.format())
{
unsafe { std::slice::from_raw_parts(cbuf as *const u8, len) }
} else {
return Err(PyErr::new::<ValueError, _>(
py,
"Nodemap data buffer has an invalid memory representation"
.to_string(),
));
};
Ok((buf, Box::new(bytes)))
}
fn py_tuple_to_revision_data_params(
py: Python,
tuple: PyTuple,
) -> PyResult<RevisionDataParams> {
if tuple.len(py) < 8 {
// this is better than the panic promised by tup.get_item()
return Err(PyErr::new::<IndexError, _>(
py,
"tuple index out of range",
));
}
let offset_or_flags: u64 = tuple.get_item(py, 0).extract(py)?;
let node_id = tuple
.get_item(py, 7)
.extract::<PyBytes>(py)?
.data(py)
.try_into()
.unwrap();
let flags = (offset_or_flags & 0xFFFF) as u16;
let data_offset = offset_or_flags >> 16;
Ok(RevisionDataParams {
flags,
data_offset,
data_compressed_length: tuple.get_item(py, 1).extract(py)?,
data_uncompressed_length: tuple.get_item(py, 2).extract(py)?,
data_delta_base: tuple.get_item(py, 3).extract(py)?,
link_rev: tuple.get_item(py, 4).extract(py)?,
parent_rev_1: tuple.get_item(py, 5).extract(py)?,
parent_rev_2: tuple.get_item(py, 6).extract(py)?,
node_id,
..Default::default()
})
}
fn revision_data_params_to_py_tuple(
py: Python,
params: RevisionDataParams,
) -> PyTuple {
PyTuple::new(
py,
&[
params.data_offset.into_py_object(py).into_object(),
params
.data_compressed_length
.into_py_object(py)
.into_object(),
params
.data_uncompressed_length
.into_py_object(py)
.into_object(),
params.data_delta_base.into_py_object(py).into_object(),
params.link_rev.into_py_object(py).into_object(),
params.parent_rev_1.into_py_object(py).into_object(),
params.parent_rev_2.into_py_object(py).into_object(),
PyBytes::new(py, &params.node_id)
.into_py_object(py)
.into_object(),
params._sidedata_offset.into_py_object(py).into_object(),
params
._sidedata_compressed_length
.into_py_object(py)
.into_object(),
params
.data_compression_mode
.into_py_object(py)
.into_object(),
params
._sidedata_compression_mode
.into_py_object(py)
.into_object(),
params._rank.into_py_object(py).into_object(),
],
)
}
struct PySnapshotsCache<'p> {
py: Python<'p>,
dict: PyDict,
}
impl<'p> SnapshotsCache for PySnapshotsCache<'p> {
fn insert_for(
&mut self,
rev: BaseRevision,
value: BaseRevision,
) -> Result<(), RevlogError> {
let pyvalue = value.into_py_object(self.py).into_object();
match self.dict.get_item(self.py, rev) {
Some(obj) => obj
.extract::<PySet>(self.py)
.and_then(|set| set.add(self.py, pyvalue)),
None => PySet::new(self.py, vec![pyvalue])
.and_then(|set| self.dict.set_item(self.py, rev, set)),
}
.map_err(|_| {
RevlogError::Other(HgError::unsupported(
"Error in Python caches handling",
))
})
}
}
impl Index {
fn new(py: Python, data: PyObject, header: u32) -> PyResult<Self> {
// Safety: we keep the buffer around inside the class as `index_mmap`
let (buf, bytes) = unsafe { mmap_keeparound(py, data)? };
Self::create_instance(
py,
hg::index::Index::new(
bytes,
IndexHeader::parse(&header.to_be_bytes())
.expect("default header is broken")
.unwrap(),
)
.map_err(|e| {
revlog_error_with_msg(py, e.to_string().as_bytes())
})?,
RefCell::new(None),
RefCell::new(None),
RefCell::new(None),
RefCell::new(Some(buf)),
RefCell::new(None),
RefCell::new(None),
)
}
fn len(&self, py: Python) -> PyResult<usize> {
let rust_index_len = self.index(py).borrow().len();
Ok(rust_index_len)
}
/// This is scaffolding at this point, but it could also become
/// a way to start a persistent nodemap or perform a
/// vacuum / repack operation
fn fill_nodemap(
&self,
py: Python,
nt: &mut CoreNodeTree,
) -> PyResult<PyObject> {
let index = self.index(py).borrow();
for r in 0..self.len(py)? {
let rev = Revision(r as BaseRevision);
// in this case node() won't ever return None
nt.insert(&*index, index.node(rev).unwrap(), rev)
.map_err(|e| nodemap_error(py, e))?
}
Ok(py.None())
}
fn get_nodetree<'a>(
&'a self,
py: Python<'a>,
) -> PyResult<&'a RefCell<Option<CoreNodeTree>>> {
if self.nt(py).borrow().is_none() {
let readonly = Box::<Vec<_>>::default();
let mut nt = CoreNodeTree::load_bytes(readonly, 0);
self.fill_nodemap(py, &mut nt)?;
self.nt(py).borrow_mut().replace(nt);
}
Ok(self.nt(py))
}
/// Returns the full nodemap bytes to be written as-is to disk
fn inner_nodemap_data_all(&self, py: Python) -> PyResult<PyBytes> {
let nodemap = self.get_nodetree(py)?.borrow_mut().take().unwrap();
let (readonly, bytes) = nodemap.into_readonly_and_added_bytes();
// If there's anything readonly, we need to build the data again from
// scratch
let bytes = if readonly.len() > 0 {
let mut nt = CoreNodeTree::load_bytes(Box::<Vec<_>>::default(), 0);
self.fill_nodemap(py, &mut nt)?;
let (readonly, bytes) = nt.into_readonly_and_added_bytes();
assert_eq!(readonly.len(), 0);
bytes
} else {
bytes
};
let bytes = PyBytes::new(py, &bytes);
Ok(bytes)
}
/// Returns the last saved docket along with the size of any changed data
/// (in number of blocks), and said data as bytes.
fn inner_nodemap_data_incremental(
&self,
py: Python,
) -> PyResult<PyObject> {
let docket = self.docket(py).borrow();
let docket = match docket.as_ref() {
Some(d) => d,
None => return Ok(py.None()),
};
let node_tree = self.get_nodetree(py)?.borrow_mut().take().unwrap();
let masked_blocks = node_tree.masked_readonly_blocks();
let (_, data) = node_tree.into_readonly_and_added_bytes();
let changed = masked_blocks * std::mem::size_of::<Block>();
Ok((docket, changed, PyBytes::new(py, &data))
.to_py_object(py)
.into_object())
}
/// Update the nodemap from the new (mmaped) data.
/// The docket is kept as a reference for later incremental calls.
fn inner_update_nodemap_data(
&self,
py: Python,
docket: PyObject,
nm_data: PyObject,
) -> PyResult<PyObject> {
// Safety: we keep the buffer around inside the class as `nodemap_mmap`
let (buf, bytes) = unsafe { mmap_keeparound(py, nm_data)? };
let len = buf.item_count();
self.nodemap_mmap(py).borrow_mut().replace(buf);
let mut nt = CoreNodeTree::load_bytes(bytes, len);
let data_tip = docket
.getattr(py, "tip_rev")?
.extract::<BaseRevision>(py)?
.into();
self.docket(py).borrow_mut().replace(docket.clone_ref(py));
let idx = self.index(py).borrow();
let data_tip = idx.check_revision(data_tip).ok_or_else(|| {
nodemap_error(py, NodeMapError::RevisionNotInIndex(data_tip))
})?;
let current_tip = idx.len();
for r in (data_tip.0 + 1)..current_tip as BaseRevision {
let rev = Revision(r);
// in this case node() won't ever return None
nt.insert(&*idx, idx.node(rev).unwrap(), rev)
.map_err(|e| nodemap_error(py, e))?
}
*self.nt(py).borrow_mut() = Some(nt);
Ok(py.None())
}
fn inner_getitem(&self, py: Python, key: PyObject) -> PyResult<PyObject> {
let idx = self.index(py).borrow();
Ok(match key.extract::<BaseRevision>(py) {
Ok(key_as_int) => {
let entry_params = if key_as_int == NULL_REVISION.0 {
RevisionDataParams::default()
} else {
let rev = UncheckedRevision(key_as_int);
match idx.entry_as_params(rev) {
Some(e) => e,
None => {
return Err(PyErr::new::<IndexError, _>(
py,
"revlog index out of range",
));
}
}
};
revision_data_params_to_py_tuple(py, entry_params)
.into_object()
}
_ => self.get_rev(py, key.extract::<PyBytes>(py)?)?.map_or_else(
|| py.None(),
|py_rev| py_rev.into_py_object(py).into_object(),
),
})
}
fn inner_head_node_ids(&self, py: Python) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
// We don't use the shortcut here, as it's actually slower to loop
// through the cached `PyList` than to re-do the whole computation for
// large lists, which are the performance sensitive ones anyway.
let head_revs = index.head_revs().map_err(|e| graph_error(py, e))?;
let res: Vec<_> = head_revs
.iter()
.map(|r| {
PyBytes::new(
py,
index
.node(*r)
.expect("rev should have been in the index")
.as_bytes(),
)
.into_object()
})
.collect();
self.cache_new_heads_py_list(&head_revs, py);
self.cache_new_heads_node_ids_py_list(&head_revs, py);
Ok(PyList::new(py, &res).into_object())
}
fn inner_headrevs(&self, py: Python) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
if let Some(new_heads) =
index.head_revs_shortcut().map_err(|e| graph_error(py, e))?
{
self.cache_new_heads_py_list(&new_heads, py);
}
Ok(self
.head_revs_py_list(py)
.borrow()
.as_ref()
.expect("head revs should be cached")
.clone_ref(py)
.into_object())
}
fn check_revision(
index: &hg::index::Index,
rev: UncheckedRevision,
py: Python,
) -> PyResult<Revision> {
index
.check_revision(rev)
.ok_or_else(|| rev_not_in_index(py, rev))
}
fn inner_headrevsdiff(
&self,
py: Python,
begin: &PyObject,
end: &PyObject,
) -> PyResult<PyObject> {
let begin = begin.extract::<BaseRevision>(py)?;
let end = end.extract::<BaseRevision>(py)?;
let index = &*self.index(py).borrow();
let begin =
Self::check_revision(index, UncheckedRevision(begin - 1), py)?;
let end = Self::check_revision(index, UncheckedRevision(end - 1), py)?;
let (removed, added) = index
.head_revs_diff(begin, end)
.map_err(|e| graph_error(py, e))?;
let removed: Vec<_> =
removed.into_iter().map(PyRevision::from).collect();
let added: Vec<_> = added.into_iter().map(PyRevision::from).collect();
let res = (removed, added).to_py_object(py).into_object();
Ok(res)
}
fn inner_headrevsfiltered(
&self,
py: Python,
filtered_revs: &PyObject,
) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
let filtered_revs = rev_pyiter_collect(py, filtered_revs, index)?;
if let Some(new_heads) = index
.head_revs_filtered(&filtered_revs, true)
.map_err(|e| graph_error(py, e))?
{
self.cache_new_heads_py_list(&new_heads, py);
}
Ok(self
.head_revs_py_list(py)
.borrow()
.as_ref()
.expect("head revs should be cached")
.clone_ref(py)
.into_object())
}
fn cache_new_heads_node_ids_py_list(
&self,
new_heads: &[Revision],
py: Python<'_>,
) -> PyList {
let index = self.index(py).borrow();
let as_vec: Vec<PyObject> = new_heads
.iter()
.map(|r| {
PyBytes::new(
py,
index
.node(*r)
.expect("rev should have been in the index")
.as_bytes(),
)
.into_object()
})
.collect();
let new_heads_py_list = PyList::new(py, &as_vec);
*self.head_node_ids_py_list(py).borrow_mut() =
Some(new_heads_py_list.clone_ref(py));
new_heads_py_list
}
fn cache_new_heads_py_list(
&self,
new_heads: &[Revision],
py: Python<'_>,
) -> PyList {
let as_vec: Vec<PyObject> = new_heads
.iter()
.map(|r| PyRevision::from(*r).into_py_object(py).into_object())
.collect();
let new_heads_py_list = PyList::new(py, &as_vec);
*self.head_revs_py_list(py).borrow_mut() =
Some(new_heads_py_list.clone_ref(py));
new_heads_py_list
}
fn inner_ancestors(
&self,
py: Python,
py_revs: &PyTuple,
) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
let revs: Vec<_> = rev_pyiter_collect(py, py_revs.as_object(), index)?;
let as_vec: Vec<_> = index
.ancestors(&revs)
.map_err(|e| graph_error(py, e))?
.iter()
.map(|r| PyRevision::from(*r).into_py_object(py).into_object())
.collect();
Ok(PyList::new(py, &as_vec).into_object())
}
fn inner_commonancestorsheads(
&self,
py: Python,
py_revs: &PyTuple,
) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
let revs: Vec<_> = rev_pyiter_collect(py, py_revs.as_object(), index)?;
let as_vec: Vec<_> = index
.common_ancestor_heads(&revs)
.map_err(|e| graph_error(py, e))?
.iter()
.map(|r| PyRevision::from(*r).into_py_object(py).into_object())
.collect();
Ok(PyList::new(py, &as_vec).into_object())
}
fn inner_computephasesmapsets(
&self,
py: Python,
py_roots: PyDict,
) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
let roots: Result<HashMap<Phase, Vec<Revision>>, PyErr> = py_roots
.items_list(py)
.iter(py)
.map(|r| {
let phase = r.get_item(py, 0)?;
let revs: Vec<_> =
rev_pyiter_collect(py, &r.get_item(py, 1)?, index)?;
let phase = Phase::try_from(phase.extract::<usize>(py)?)
.map_err(|_| revlog_error(py));
Ok((phase?, revs))
})
.collect();
let (len, phase_maps) = index
.compute_phases_map_sets(roots?)
.map_err(|e| graph_error(py, e))?;
// Ugly hack, but temporary
const IDX_TO_PHASE_NUM: [usize; 4] = [1, 2, 32, 96];
let py_phase_maps = PyDict::new(py);
for (idx, roots) in phase_maps.into_iter().enumerate() {
let phase_num = IDX_TO_PHASE_NUM[idx].into_py_object(py);
// This is a bit faster than collecting into a `Vec` and passing
// it to `PySet::new`.
let set = PySet::empty(py)?;
for rev in roots {
set.add(py, PyRevision::from(rev).into_py_object(py))?;
}
py_phase_maps.set_item(py, phase_num, set)?;
}
Ok(PyTuple::new(
py,
&[
len.into_py_object(py).into_object(),
py_phase_maps.into_object(),
],
)
.into_object())
}
fn inner_slicechunktodensity(
&self,
py: Python,
revs: PyObject,
target_density: f64,
min_gap_size: usize,
) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
let revs: Vec<_> = rev_pyiter_collect(py, &revs, index)?;
let as_nested_vec =
index.slice_chunk_to_density(&revs, target_density, min_gap_size);
let mut res = Vec::with_capacity(as_nested_vec.len());
let mut py_chunk = Vec::new();
for chunk in as_nested_vec {
py_chunk.clear();
py_chunk.reserve_exact(chunk.len());
for rev in chunk {
py_chunk.push(
PyRevision::from(rev).into_py_object(py).into_object(),
);
}
res.push(PyList::new(py, &py_chunk).into_object());
}
// This is just to do the same as C, not sure why it does this
if res.len() == 1 {
Ok(PyTuple::new(py, &res).into_object())
} else {
Ok(PyList::new(py, &res).into_object())
}
}
fn inner_reachableroots2(
&self,
py: Python,
min_root: UncheckedRevision,
heads: PyObject,
roots: PyObject,
include_path: bool,
) -> PyResult<PyObject> {
let index = &*self.index(py).borrow();
let heads = rev_pyiter_collect_or_else(py, &heads, index, |_rev| {
PyErr::new::<IndexError, _>(py, "head out of range")
})?;
let roots: Result<_, _> = roots
.iter(py)?
.map(|r| {
r.and_then(|o| match o.extract::<PyRevision>(py) {
Ok(r) => Ok(UncheckedRevision(r.0)),
Err(e) => Err(e),
})
})
.collect();
let as_set = index
.reachable_roots(min_root, heads, roots?, include_path)
.map_err(|e| graph_error(py, e))?;
let as_vec: Vec<PyObject> = as_set
.iter()
.map(|r| PyRevision::from(*r).into_py_object(py).into_object())
.collect();
Ok(PyList::new(py, &as_vec).into_object())
}
}
py_class!(pub class NodeTree |py| {
data nt: RefCell<CoreNodeTree>;
data index: RefCell<UnsafePyLeaked<PySharedIndex>>;
def __new__(_cls, index: PyObject) -> PyResult<NodeTree> {
let index = py_rust_index_to_graph(py, index)?;
let nt = CoreNodeTree::default(); // in-RAM, fully mutable
Self::create_instance(py, RefCell::new(nt), RefCell::new(index))
}
/// Tell whether the NodeTree is still valid
///
/// In case of mutation of the index, the given results are not
/// guaranteed to be correct, and in fact, the methods borrowing
/// the inner index would fail because of `PySharedRef` poisoning
/// (generation-based guard), same as iterating on a `dict` that has
/// been meanwhile mutated.
def is_invalidated(&self) -> PyResult<bool> {
let leaked = self.index(py).borrow();
// Safety: we don't leak the "faked" reference out of `UnsafePyLeaked`
let result = unsafe { leaked.try_borrow(py) };
// two cases for result to be an error:
// - the index has previously been mutably borrowed
// - there is currently a mutable borrow
// in both cases this amounts for previous results related to
// the index to still be valid.
Ok(result.is_err())
}
def insert(&self, rev: PyRevision) -> PyResult<PyObject> {
let leaked = self.index(py).borrow();
// Safety: we don't leak the "faked" reference out of `UnsafePyLeaked`
let index = &*unsafe { leaked.try_borrow(py)? };
let rev = UncheckedRevision(rev.0);
let rev = index
.check_revision(rev)
.ok_or_else(|| rev_not_in_index(py, rev))?;
if rev == NULL_REVISION {
return Err(rev_not_in_index(py, rev.into()))
}
let entry = index.inner.get_entry(rev).unwrap();
let mut nt = self.nt(py).borrow_mut();
nt.insert(index, entry.hash(), rev).map_err(|e| nodemap_error(py, e))?;
Ok(py.None())
}
/// Lookup by node hex prefix in the NodeTree, returning revision number.
///
/// This is not part of the classical NodeTree API, but is good enough
/// for unit testing, as in `test-rust-revlog.py`.
def prefix_rev_lookup(
&self,
node_prefix: PyBytes
) -> PyResult<Option<PyRevision>> {
let prefix = NodePrefix::from_hex(node_prefix.data(py))
.map_err(|_| PyErr::new::<ValueError, _>(
py,
format!("Invalid node or prefix {:?}",
node_prefix.as_object()))
)?;
let nt = self.nt(py).borrow();
let leaked = self.index(py).borrow();
// Safety: we don't leak the "faked" reference out of `UnsafePyLeaked`
let index = &*unsafe { leaked.try_borrow(py)? };
Ok(nt.find_bin(index, prefix)
.map_err(|e| nodemap_error(py, e))?
.map(|r| r.into())
)
}
def shortest(&self, node: PyBytes) -> PyResult<usize> {
let nt = self.nt(py).borrow();
let leaked = self.index(py).borrow();
// Safety: we don't leak the "faked" reference out of `UnsafePyLeaked`
let idx = &*unsafe { leaked.try_borrow(py)? };
match nt.unique_prefix_len_node(idx, &node_from_py_bytes(py, &node)?)
{
Ok(Some(l)) => Ok(l),
Ok(None) => Err(revlog_error(py)),
Err(e) => Err(nodemap_error(py, e)),
}
}
});
fn revlog_error(py: Python) -> PyErr {
match py
.import("mercurial.error")
.and_then(|m| m.get(py, "RevlogError"))
{
Err(e) => e,
Ok(cls) => PyErr::from_instance(
py,
cls.call(py, (py.None(),), None).ok().into_py_object(py),
),
}
}
fn revlog_error_with_msg(py: Python, msg: &[u8]) -> PyErr {
match py
.import("mercurial.error")
.and_then(|m| m.get(py, "RevlogError"))
{
Err(e) => e,
Ok(cls) => PyErr::from_instance(
py,
cls.call(py, (PyBytes::new(py, msg),), None)
.ok()
.into_py_object(py),
),
}
}
fn graph_error(py: Python, _err: hg::GraphError) -> PyErr {
// ParentOutOfRange is currently the only alternative
// in `hg::GraphError`. The C index always raises this simple ValueError.
PyErr::new::<ValueError, _>(py, "parent out of range")
}
fn nodemap_rev_not_in_index(py: Python, rev: UncheckedRevision) -> PyErr {
PyErr::new::<ValueError, _>(
py,
format!(
"Inconsistency: Revision {} found in nodemap \
is not in revlog index",
rev
),
)
}
fn rev_not_in_index(py: Python, rev: UncheckedRevision) -> PyErr {
PyErr::new::<ValueError, _>(
py,
format!("revlog index out of range: {}", rev),
)
}
/// Standard treatment of NodeMapError
fn nodemap_error(py: Python, err: NodeMapError) -> PyErr {
match err {
NodeMapError::MultipleResults => revlog_error(py),
NodeMapError::RevisionNotInIndex(r) => nodemap_rev_not_in_index(py, r),
}
}
/// Create the module, with __package__ given from parent
pub fn init_module(py: Python, package: &str) -> PyResult<PyModule> {
let dotted_name = &format!("{}.revlog", package);
let m = PyModule::new(py, dotted_name)?;
m.add(py, "__package__", package)?;
m.add(py, "__doc__", "RevLog - Rust implementations")?;
m.add_class::<Index>(py)?;
m.add_class::<NodeTree>(py)?;
let sys = PyModule::import(py, "sys")?;
let sys_modules: PyDict = sys.get(py, "modules")?.extract(py)?;
sys_modules.set_item(py, dotted_name, &m)?;
Ok(m)
}