##// END OF EJS Templates
discovery: slowly increase sampling size...
discovery: slowly increase sampling size Some pathological discovery runs can requires many roundtrip. When this happens things can get very slow. To make the algorithm more resilience again such pathological case. We slowly increase the sample size with each roundtrip (+5%). This will have a negligible impact on "normal" discovery with few roundtrips, but a large positive impact of case with many roundtrips. Asking more question per roundtrip helps to reduce the undecided set faster. Instead of reducing the undecided set a linear speed (in the worst case), we reduce it as a guaranteed (small) exponential rate. The data below show this slow ramp up in sample size: round trip | 1 | 5 | 10 | 20 | 50 | 100 | 130 | sample size | 200 | 254 | 321 | 517 | 2 199 | 25 123 | 108 549 | covered nodes | 200 | 1 357 | 2 821 | 7 031 | 42 658 | 524 530 | 2 276 755 | To be a bit more concrete, lets take a very pathological case as an example. We are doing discovery from a copy of Mozilla-try to a more recent version of mozilla-unified. Mozilla-unified heads are unknown to the mozilla-try repo and there are over 1 million "missing" changesets. (the discovery is "local" to avoid network interference) Without this change, the discovery: - last 1858 seconds (31 minutes), - does 1700 round trip, - asking about 340 000 nodes. With this change, the discovery: - last 218 seconds (3 minutes, 38 seconds a -88% improvement), - does 94 round trip (-94%), - asking about 344 211 nodes (+1%). Of course, this is an extreme case (and 3 minutes is still slow). However this give a good example of how this sample size increase act as a safety net catching any bad situations. We could image a steeper increase than 5%. For example 10% would give the following number: round trip | 1 | 5 | 10 | 20 | 50 | 75 | 100 | sample size | 200 | 321 | 514 | 1 326 | 23 060 | 249 812 | 2 706 594 | covered nodes | 200 | 1 541 | 3 690 | 12 671 | 251 871 | 2 746 254 | 29 770 966 | In parallel, it is useful to understand these pathological cases and improve them. However the current change provides a general purpose safety net to smooth the impact of pathological cases. To avoid issue with older http server, the increase in sample size only occurs if the protocol has not limit on command argument size.

File last commit:

r34950:ff178743 stable
r42546:dbd0fcca default
Show More
phases.txt
100 lines | 3.0 KiB | text/plain | TextLexer
What are phases?
================
Phases are a system for tracking which changesets have been or should
be shared. This helps prevent common mistakes when modifying history
(for instance, with the mq or rebase extensions).
Each changeset in a repository is in one of the following phases:
- public : changeset is visible on a public server
- draft : changeset is not yet published
- secret : changeset should not be pushed, pulled, or cloned
These phases are ordered (public < draft < secret) and no changeset
can be in a lower phase than its ancestors. For instance, if a
changeset is public, all its ancestors are also public. Lastly,
changeset phases should only be changed towards the public phase.
How are phases managed?
=======================
For the most part, phases should work transparently. By default, a
changeset is created in the draft phase and is moved into the public
phase when it is pushed to another repository.
Once changesets become public, extensions like mq and rebase will
refuse to operate on them to prevent creating duplicate changesets.
Phases can also be manually manipulated with the :hg:`phase` command
if needed. See :hg:`help -v phase` for examples.
To make your commits secret by default, put this in your
configuration file::
[phases]
new-commit = secret
Phases and servers
==================
Normally, all servers are ``publishing`` by default. This means::
- all draft changesets that are pulled or cloned appear in phase
public on the client
- all draft changesets that are pushed appear as public on both
client and server
- secret changesets are neither pushed, pulled, or cloned
.. note::
Pulling a draft changeset from a publishing server does not mark it
as public on the server side due to the read-only nature of pull.
Sometimes it may be desirable to push and pull changesets in the draft
phase to share unfinished work. This can be done by setting a
repository to disable publishing in its configuration file::
[phases]
publish = False
See :hg:`help config` for more information on configuration files.
.. note::
Servers running older versions of Mercurial are treated as
publishing.
.. note::
Changesets in secret phase are not exchanged with the server. This
applies to their content: file names, file contents, and changeset
metadata. For technical reasons, the identifier (e.g. d825e4025e39)
of the secret changeset may be communicated to the server.
Examples
========
- list changesets in draft or secret phase::
hg log -r "not public()"
- change all secret changesets to draft::
hg phase --draft "secret()"
- forcibly move the current changeset and descendants from public to draft::
hg phase --force --draft .
- show a list of changeset revisions and each corresponding phase::
hg log --template "{rev} {phase}\n"
- resynchronize draft changesets relative to a remote repository::
hg phase -fd "outgoing(URL)"
See :hg:`help phase` for more information on manually manipulating phases.