##// END OF EJS Templates
discovery: slowly increase sampling size...
discovery: slowly increase sampling size Some pathological discovery runs can requires many roundtrip. When this happens things can get very slow. To make the algorithm more resilience again such pathological case. We slowly increase the sample size with each roundtrip (+5%). This will have a negligible impact on "normal" discovery with few roundtrips, but a large positive impact of case with many roundtrips. Asking more question per roundtrip helps to reduce the undecided set faster. Instead of reducing the undecided set a linear speed (in the worst case), we reduce it as a guaranteed (small) exponential rate. The data below show this slow ramp up in sample size: round trip | 1 | 5 | 10 | 20 | 50 | 100 | 130 | sample size | 200 | 254 | 321 | 517 | 2 199 | 25 123 | 108 549 | covered nodes | 200 | 1 357 | 2 821 | 7 031 | 42 658 | 524 530 | 2 276 755 | To be a bit more concrete, lets take a very pathological case as an example. We are doing discovery from a copy of Mozilla-try to a more recent version of mozilla-unified. Mozilla-unified heads are unknown to the mozilla-try repo and there are over 1 million "missing" changesets. (the discovery is "local" to avoid network interference) Without this change, the discovery: - last 1858 seconds (31 minutes), - does 1700 round trip, - asking about 340 000 nodes. With this change, the discovery: - last 218 seconds (3 minutes, 38 seconds a -88% improvement), - does 94 round trip (-94%), - asking about 344 211 nodes (+1%). Of course, this is an extreme case (and 3 minutes is still slow). However this give a good example of how this sample size increase act as a safety net catching any bad situations. We could image a steeper increase than 5%. For example 10% would give the following number: round trip | 1 | 5 | 10 | 20 | 50 | 75 | 100 | sample size | 200 | 321 | 514 | 1 326 | 23 060 | 249 812 | 2 706 594 | covered nodes | 200 | 1 541 | 3 690 | 12 671 | 251 871 | 2 746 254 | 29 770 966 | In parallel, it is useful to understand these pathological cases and improve them. However the current change provides a general purpose safety net to smooth the impact of pathological cases. To avoid issue with older http server, the increase in sample size only occurs if the protocol has not limit on command argument size.

File last commit:

r40469:89703e61 stable
r42546:dbd0fcca default
Show More
profiling.py
252 lines | 8.0 KiB | text/x-python | PythonLexer
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
from .i18n import _
from . import (
encoding,
error,
extensions,
pycompat,
util,
)
def _loadprofiler(ui, profiler):
"""load profiler extension. return profile method, or None on failure"""
extname = profiler
extensions.loadall(ui, whitelist=[extname])
try:
mod = extensions.find(extname)
except KeyError:
return None
else:
return getattr(mod, 'profile', None)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format')
field = ui.config('profiling', 'sort')
limit = ui.configint('profiling', 'limit')
climit = ui.configint('profiling', 'nested')
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(pycompat.sysstr(field))
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq')
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = util.timer()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
util.timer() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
from . import statprof
freq = ui.configint('profiling', 'freq')
if freq > 0:
# Cannot reset when profiler is already active. So silently no-op.
if statprof.state.profile_level == 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
track = ui.config('profiling', 'time-track',
pycompat.iswindows and 'cpu' or 'real')
statprof.start(mechanism='thread', track=track)
try:
yield
finally:
data = statprof.stop()
profformat = ui.config('profiling', 'statformat')
formats = {
'byline': statprof.DisplayFormats.ByLine,
'bymethod': statprof.DisplayFormats.ByMethod,
'hotpath': statprof.DisplayFormats.Hotpath,
'json': statprof.DisplayFormats.Json,
'chrome': statprof.DisplayFormats.Chrome,
}
if profformat in formats:
displayformat = formats[profformat]
else:
ui.warn(_('unknown profiler output format: %s\n') % profformat)
displayformat = statprof.DisplayFormats.Hotpath
kwargs = {}
def fraction(s):
if isinstance(s, (float, int)):
return float(s)
if s.endswith('%'):
v = float(s[:-1]) / 100
else:
v = float(s)
if 0 <= v <= 1:
return v
raise ValueError(s)
if profformat == 'chrome':
showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
showmax = ui.configwith(fraction, 'profiling', 'showmax')
kwargs.update(minthreshold=showmin, maxthreshold=showmax)
elif profformat == 'hotpath':
# inconsistent config: profiling.showmin
limit = ui.configwith(fraction, 'profiling', 'showmin', 0.05)
kwargs[r'limit'] = limit
statprof.display(fp, data=data, format=displayformat, **kwargs)
class profile(object):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
def __init__(self, ui, enabled=True):
self._ui = ui
self._output = None
self._fp = None
self._fpdoclose = True
self._profiler = None
self._enabled = enabled
self._entered = False
self._started = False
def __enter__(self):
self._entered = True
if self._enabled:
self.start()
return self
def start(self):
"""Start profiling.
The profiling will stop at the context exit.
If the profiler was already started, this has no effect."""
if not self._entered:
raise error.ProgrammingError()
if self._started:
return
self._started = True
profiler = encoding.environ.get('HGPROF')
proffn = None
if profiler is None:
profiler = self._ui.config('profiling', 'type')
if profiler not in ('ls', 'stat', 'flame'):
# try load profiler from extension with the same name
proffn = _loadprofiler(self._ui, profiler)
if proffn is None:
self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
% profiler)
profiler = 'stat'
self._output = self._ui.config('profiling', 'output')
try:
if self._output == 'blackbox':
self._fp = util.stringio()
elif self._output:
path = self._ui.expandpath(self._output)
self._fp = open(path, 'wb')
elif pycompat.iswindows:
# parse escape sequence by win32print()
class uifp(object):
def __init__(self, ui):
self._ui = ui
def write(self, data):
self._ui.write_err(data)
def flush(self):
self._ui.flush()
self._fpdoclose = False
self._fp = uifp(self._ui)
else:
self._fpdoclose = False
self._fp = self._ui.ferr
if proffn is not None:
pass
elif profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
self._profiler = proffn(self._ui, self._fp)
self._profiler.__enter__()
except: # re-raises
self._closefp()
raise
def __exit__(self, exception_type, exception_value, traceback):
propagate = None
if self._profiler is not None:
propagate = self._profiler.__exit__(exception_type, exception_value,
traceback)
if self._output == 'blackbox':
val = 'Profile:\n%s' % self._fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
self._ui.log('profile', val)
self._closefp()
return propagate
def _closefp(self):
if self._fpdoclose and self._fp is not None:
self._fp.close()