##// END OF EJS Templates
registrar: replace "cmdtype" with an intent-based mechanism (API)...
registrar: replace "cmdtype" with an intent-based mechanism (API) Commands perform varied actions and repositories vary in their capabilities. Historically, the .hg/requires file has been used to lock out clients lacking a requirement. But this is a very heavy-handed approach and is typically reserved for cases where the on-disk storage format changes and we want to prevent incompatible clients from operating on a repo. Outside of the .hg/requires file, we tend to deal with things like optional, extension-provided features via checking at call sites. We'll either have checks in core or extensions will monkeypatch functions in core disabling incompatible features, enabling new features, etc. Things are somewhat tolerable today. But once we introduce alternate storage backends with varying support for repository features and vastly different modes of behavior, the current model will quickly grow unwieldy. For example, the implementation of the "simple store" required a lot of hacks to deal with stripping and verify because various parts of core assume things are implemented a certain way. Partial clone will require new ways of modeling file data retrieval, because we can no longer assume that all file data is already local. In this new world, some commands might not make any sense for certain types of repositories. What we need is a mechanism to affect the construction of repository (and eventually peer) instances so the requirements/capabilities needed for the current operation can be taken into account. "Current operation" can almost certainly be defined by a command. So it makes sense for commands to declare their intended actions. This commit introduces the "intents" concept on the command registrar. "intents" captures a set of strings that declare actions that are anticipated to be taken, requirements the repository must possess, etc. These intents will be passed into hg.repo(), which will pass them into localrepository, where they can be used to influence the object being created. Some use cases for this include: * For read-only intents, constructing a repository object that doesn't expose methods that can mutate the repository. Its VFS instances don't even allow opening a file with write access. * For read-only intents, constructing a repository object without cache invalidation logic. If the repo never changes during its lifetime, nothing ever needs to be invalidated and we don't need to do expensive things like verify the changelog's hidden revisions state is accurate every time we access repo.changelog. * We can automatically hide commands from `hg help` when the current repository doesn't provide that command. For example, an alternate storage backend may not support `hg commit`, so we can hide that command or anything else that would perform local commits. We already kind of had an "intents" mechanism on the registrar in the form of "cmdtype." However, it was never used. And it was limited to a single value. We really need something that supports multiple intents. And because intents may be defined by extensions and at this point are advisory, I think it is best to define them in a set rather than as separate arguments/attributes on the command. Differential Revision: https://phab.mercurial-scm.org/D3376

File last commit:

r34398:765eb17a default
r37734:dfc51a48 default
Show More
_compat.py
90 lines | 2.8 KiB | text/x-python | PythonLexer
from __future__ import absolute_import, division, print_function
import sys
import types
PY2 = sys.version_info[0] == 2
if PY2:
from UserDict import IterableUserDict
# We 'bundle' isclass instead of using inspect as importing inspect is
# fairly expensive (order of 10-15 ms for a modern machine in 2016)
def isclass(klass):
return isinstance(klass, (type, types.ClassType))
# TYPE is used in exceptions, repr(int) is different on Python 2 and 3.
TYPE = "type"
def iteritems(d):
return d.iteritems()
def iterkeys(d):
return d.iterkeys()
# Python 2 is bereft of a read-only dict proxy, so we make one!
class ReadOnlyDict(IterableUserDict):
"""
Best-effort read-only dict wrapper.
"""
def __setitem__(self, key, val):
# We gently pretend we're a Python 3 mappingproxy.
raise TypeError("'mappingproxy' object does not support item "
"assignment")
def update(self, _):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'update'")
def __delitem__(self, _):
# We gently pretend we're a Python 3 mappingproxy.
raise TypeError("'mappingproxy' object does not support item "
"deletion")
def clear(self):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'clear'")
def pop(self, key, default=None):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'pop'")
def popitem(self):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'popitem'")
def setdefault(self, key, default=None):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'setdefault'")
def __repr__(self):
# Override to be identical to the Python 3 version.
return "mappingproxy(" + repr(self.data) + ")"
def metadata_proxy(d):
res = ReadOnlyDict()
res.data.update(d) # We blocked update, so we have to do it like this.
return res
else:
def isclass(klass):
return isinstance(klass, type)
TYPE = "class"
def iteritems(d):
return d.items()
def iterkeys(d):
return d.keys()
def metadata_proxy(d):
return types.MappingProxyType(dict(d))