##// END OF EJS Templates
sslutil: abort when unable to verify peer connection (BC)...
sslutil: abort when unable to verify peer connection (BC) Previously, when we connected to a server and were unable to verify its certificate against a trusted certificate authority we would issue a warning and continue to connect. This is obviously not great behavior because the x509 certificate model is based upon trust of specific CAs. Failure to enforce that trust erodes security. This behavior was defined several years ago when Python did not support loading the system trusted CA store (Python 2.7.9's backports of Python 3's improvements to the "ssl" module enabled this). This commit changes behavior when connecting to abort if the peer certificate can't be validated. With an empty/default Mercurial configuration, the peer certificate can be validated if Python is able to load the system trusted CA store. Environments able to load the system trusted CA store include: * Python 2.7.9+ on most platforms and installations * Python 2.7 distributions with a modern ssl module (e.g. RHEL7's patched 2.7.5 package) * Python shipped on OS X Environments unable to load the system trusted CA store include: * Python 2.6 * Python 2.7 on many existing Linux installs (because they don't ship 2.7.9+ or haven't backported modern ssl module) * Python 2.7.9+ on some installs where Python is unable to locate the system CA store (this is hopefully rare) Users of these Pythongs will need to configure Mercurial to load the system CA store using web.cacerts. This should ideally be performed by packagers (by setting web.cacerts in the global/system hgrc file). Where Mercurial packagers aren't setting this, the linked URL in the new abort message can contain instructions for users. In the future, we may want to add more code for finding the system CA store. For example, many Linux distributions have the CA store at well-known locations (such as /etc/ssl/certs/ca-certificates.crt in the case of Ubuntu). This will enable CA loading to "just work" on more Python configurations and will be best for our users since they won't have to change anything after upgrading to a Mercurial with this patch. We may also want to consider distributing a trusted CA store with Mercurial. Although we should think long and hard about that because most systems have a global CA store and Mercurial should almost certainly use the same store used by everything else on the system.

File last commit:

r28861:86db5cb5 default
r29411:e1778b9c default
Show More
mpatch.py
127 lines | 3.3 KiB | text/x-python | PythonLexer
# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import struct
from . import pycompat
stringio = pycompat.stringio
class mpatchError(Exception):
"""error raised when a delta cannot be decoded
"""
# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.
def _pull(dst, src, l): # pull l bytes from src
while l:
f = src.pop()
if f[0] > l: # do we need to split?
src.append((f[0] - l, f[1] + l))
dst.append((l, f[1]))
return
dst.append(f)
l -= f[0]
def _move(m, dest, src, count):
"""move count bytes from src to dest
The file pointer is left at the end of dest.
"""
m.seek(src)
buf = m.read(count)
m.seek(dest)
m.write(buf)
def _collect(m, buf, list):
start = buf
for l, p in reversed(list):
_move(m, buf, p, l)
buf += l
return (buf - start, start)
def patches(a, bins):
if not bins:
return a
plens = [len(x) for x in bins]
pl = sum(plens)
bl = len(a) + pl
tl = bl + bl + pl # enough for the patches and two working texts
b1, b2 = 0, bl
if not tl:
return a
m = stringio()
# load our original text
m.write(a)
frags = [(len(a), b1)]
# copy all the patches into our segment so we can memmove from them
pos = b2 + bl
m.seek(pos)
for p in bins: m.write(p)
for plen in plens:
# if our list gets too long, execute it
if len(frags) > 128:
b2, b1 = b1, b2
frags = [_collect(m, b1, frags)]
new = []
end = pos + plen
last = 0
while pos < end:
m.seek(pos)
try:
p1, p2, l = struct.unpack(">lll", m.read(12))
except struct.error:
raise mpatchError("patch cannot be decoded")
_pull(new, frags, p1 - last) # what didn't change
_pull([], frags, p2 - p1) # what got deleted
new.append((l, pos + 12)) # what got added
pos += l + 12
last = p2
frags.extend(reversed(new)) # what was left at the end
t = _collect(m, b2, frags)
m.seek(t[1])
return m.read(t[0])
def patchedsize(orig, delta):
outlen, last, bin = 0, 0, 0
binend = len(delta)
data = 12
while data <= binend:
decode = delta[bin:bin + 12]
start, end, length = struct.unpack(">lll", decode)
if start > end:
break
bin = data + length
data = bin + 12
outlen += start - last
last = end
outlen += length
if bin != binend:
raise mpatchError("patch cannot be decoded")
outlen += orig - last
return outlen