##// END OF EJS Templates
phase: improve retractboundary perf...
phase: improve retractboundary perf The existing retractboundary implementation computed the new boundary by walking all descendants of all existing roots and computing the new roots. This is O(commits since first root), which on long repos can be hundreds of thousands of commits. The new algorithm only updates roots that are greater than the new root locations. For common operations like commit on a repo with the earliest root several hundred thousand commits ago, this makes retractboundary go from 1 second to 0.008 seconds. I tested it by running the test suite with both implementations and checking that the root results were always the identical. There was some discussion on IRC about the safety of this (i.e. what if the new nodes are already part of the phase, etc). I've looked into it and believe this patch is safe: 1) The old existing code already filters the input nodes to only contain nodes that require retracting (i.e. we only make node X a new root if the old phase is less than the target phase), so there's no chance of us adding a unnecessary root to the phase (unless the input root is made unnecessary by another root in the same input, but see point #3). 2) Another way of thinking about this is: the only way the new algorithm would be different from the old algorithm is if it added a root that is a descendant of an old root (since the old algorithm would've caught this in the big "roots(%ln::)". At the beginning of the function, when we filter out roots that already meet the phase criteria, the *definition* of meeting the phase criteria is "not being a descendant of an existing root". Therefore, by definition none of the new roots we are processing are descendants of an existing root. 3) If two nodes are passed in as input, and one node is an ancestor of the other (and therefore the later node should not be a root), this is still caught by the 'roots(%ln::)' revset. So there's no chance of an extra root being introduced that way either.

File last commit:

r26778:a95c975f default
r26909:e3611881 default
Show More
relink.py
187 lines | 6.3 KiB | text/x-python | PythonLexer
# Mercurial extension to provide 'hg relink' command
#
# Copyright (C) 2007 Brendan Cully <brendan@kublai.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
"""recreates hardlinks between repository clones"""
from mercurial import cmdutil, hg, util, error
from mercurial.i18n import _
import os, stat
cmdtable = {}
command = cmdutil.command(cmdtable)
# Note for extension authors: ONLY specify testedwith = 'internal' for
# extensions which SHIP WITH MERCURIAL. Non-mainline extensions should
# be specifying the version(s) of Mercurial they are tested with, or
# leave the attribute unspecified.
testedwith = 'internal'
@command('relink', [], _('[ORIGIN]'))
def relink(ui, repo, origin=None, **opts):
"""recreate hardlinks between two repositories
When repositories are cloned locally, their data files will be
hardlinked so that they only use the space of a single repository.
Unfortunately, subsequent pulls into either repository will break
hardlinks for any files touched by the new changesets, even if
both repositories end up pulling the same changes.
Similarly, passing --rev to "hg clone" will fail to use any
hardlinks, falling back to a complete copy of the source
repository.
This command lets you recreate those hardlinks and reclaim that
wasted space.
This repository will be relinked to share space with ORIGIN, which
must be on the same local disk. If ORIGIN is omitted, looks for
"default-relink", then "default", in [paths].
Do not attempt any read operations on this repository while the
command is running. (Both repositories will be locked against
writes.)
"""
if (not util.safehasattr(util, 'samefile') or
not util.safehasattr(util, 'samedevice')):
raise error.Abort(_('hardlinks are not supported on this system'))
src = hg.repository(repo.baseui, ui.expandpath(origin or 'default-relink',
origin or 'default'))
ui.status(_('relinking %s to %s\n') % (src.store.path, repo.store.path))
if repo.root == src.root:
ui.status(_('there is nothing to relink\n'))
return
if not util.samedevice(src.store.path, repo.store.path):
# No point in continuing
raise error.Abort(_('source and destination are on different devices'))
locallock = repo.lock()
try:
remotelock = src.lock()
try:
candidates = sorted(collect(src, ui))
targets = prune(candidates, src.store.path, repo.store.path, ui)
do_relink(src.store.path, repo.store.path, targets, ui)
finally:
remotelock.release()
finally:
locallock.release()
def collect(src, ui):
seplen = len(os.path.sep)
candidates = []
live = len(src['tip'].manifest())
# Your average repository has some files which were deleted before
# the tip revision. We account for that by assuming that there are
# 3 tracked files for every 2 live files as of the tip version of
# the repository.
#
# mozilla-central as of 2010-06-10 had a ratio of just over 7:5.
total = live * 3 // 2
src = src.store.path
pos = 0
ui.status(_("tip has %d files, estimated total number of files: %d\n")
% (live, total))
for dirpath, dirnames, filenames in os.walk(src):
dirnames.sort()
relpath = dirpath[len(src) + seplen:]
for filename in sorted(filenames):
if filename[-2:] not in ('.d', '.i'):
continue
st = os.stat(os.path.join(dirpath, filename))
if not stat.S_ISREG(st.st_mode):
continue
pos += 1
candidates.append((os.path.join(relpath, filename), st))
ui.progress(_('collecting'), pos, filename, _('files'), total)
ui.progress(_('collecting'), None)
ui.status(_('collected %d candidate storage files\n') % len(candidates))
return candidates
def prune(candidates, src, dst, ui):
def linkfilter(src, dst, st):
try:
ts = os.stat(dst)
except OSError:
# Destination doesn't have this file?
return False
if util.samefile(src, dst):
return False
if not util.samedevice(src, dst):
# No point in continuing
raise error.Abort(
_('source and destination are on different devices'))
if st.st_size != ts.st_size:
return False
return st
targets = []
total = len(candidates)
pos = 0
for fn, st in candidates:
pos += 1
srcpath = os.path.join(src, fn)
tgt = os.path.join(dst, fn)
ts = linkfilter(srcpath, tgt, st)
if not ts:
ui.debug('not linkable: %s\n' % fn)
continue
targets.append((fn, ts.st_size))
ui.progress(_('pruning'), pos, fn, _('files'), total)
ui.progress(_('pruning'), None)
ui.status(_('pruned down to %d probably relinkable files\n') % len(targets))
return targets
def do_relink(src, dst, files, ui):
def relinkfile(src, dst):
bak = dst + '.bak'
os.rename(dst, bak)
try:
util.oslink(src, dst)
except OSError:
os.rename(bak, dst)
raise
os.remove(bak)
CHUNKLEN = 65536
relinked = 0
savedbytes = 0
pos = 0
total = len(files)
for f, sz in files:
pos += 1
source = os.path.join(src, f)
tgt = os.path.join(dst, f)
# Binary mode, so that read() works correctly, especially on Windows
sfp = file(source, 'rb')
dfp = file(tgt, 'rb')
sin = sfp.read(CHUNKLEN)
while sin:
din = dfp.read(CHUNKLEN)
if sin != din:
break
sin = sfp.read(CHUNKLEN)
sfp.close()
dfp.close()
if sin:
ui.debug('not linkable: %s\n' % f)
continue
try:
relinkfile(source, tgt)
ui.progress(_('relinking'), pos, f, _('files'), total)
relinked += 1
savedbytes += sz
except OSError as inst:
ui.warn('%s: %s\n' % (tgt, str(inst)))
ui.progress(_('relinking'), None)
ui.status(_('relinked %d files (%s reclaimed)\n') %
(relinked, util.bytecount(savedbytes)))