##// END OF EJS Templates
narrow: widen when files are excluded by sparse and not included by narrow...
narrow: widen when files are excluded by sparse and not included by narrow In a repo where some directories are included by narrow and the complement are excluded by sparse, it was previously impossible to widen either because trying to widen narrow would complain that the requested files are outside the sparse checkout and trying to widen sparse would complain that the requested files are outside the narrow checkout. This changes the `hg tracked --addinclude` command to only actually update any newly accessible files in the dirstate if they are also accessible via sparse. Differential Revision: https://phab.mercurial-scm.org/D10734

File last commit:

r46195:426294d0 default
r48084:e4ccc341 default
Show More
procutil.rs
104 lines | 2.8 KiB | application/rls-services+xml | RustLexer
// Copyright 2018 Yuya Nishihara <yuya@tcha.org>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Low-level utility for signal and process handling.
use libc::{self, c_int, pid_t, size_t, ssize_t};
use std::io;
use std::os::unix::io::RawFd;
use std::sync;
#[link(name = "procutil", kind = "static")]
extern "C" {
// sendfds.c
fn sendfds(sockfd: c_int, fds: *const c_int, fdlen: size_t) -> ssize_t;
// sighandlers.c
fn setupsignalhandler(pid: pid_t, pgid: pid_t) -> c_int;
fn restoresignalhandler() -> c_int;
}
/// Returns the effective uid of the current process.
pub fn get_effective_uid() -> u32 {
unsafe { libc::geteuid() }
}
/// Returns the umask of the current process.
///
/// # Safety
///
/// This is unsafe because the umask value is temporarily changed, and
/// the change can be observed from the other threads. Don't call this in
/// multi-threaded context.
pub unsafe fn get_umask() -> u32 {
let mask = libc::umask(0);
libc::umask(mask);
mask
}
/// Changes the given fd to blocking mode.
pub fn set_blocking_fd(fd: RawFd) -> io::Result<()> {
let flags = unsafe { libc::fcntl(fd, libc::F_GETFL) };
if flags < 0 {
return Err(io::Error::last_os_error());
}
let r =
unsafe { libc::fcntl(fd, libc::F_SETFL, flags & !libc::O_NONBLOCK) };
if r < 0 {
return Err(io::Error::last_os_error());
}
Ok(())
}
/// Sends file descriptors via the given socket.
pub fn send_raw_fds(sock_fd: RawFd, fds: &[RawFd]) -> io::Result<()> {
let r = unsafe { sendfds(sock_fd, fds.as_ptr(), fds.len() as size_t) };
if r < 0 {
return Err(io::Error::last_os_error());
}
Ok(())
}
static SETUP_SIGNAL_HANDLER: sync::Once = sync::Once::new();
static RESTORE_SIGNAL_HANDLER: sync::Once = sync::Once::new();
/// Installs signal handlers to forward signals to the server.
///
/// # Safety
///
/// This touches global states, and thus synchronized as a one-time
/// initialization function.
pub fn setup_signal_handler_once(
pid: u32,
pgid: Option<u32>,
) -> io::Result<()> {
let pid_signed = pid as i32;
let pgid_signed = pgid.map(|n| n as i32).unwrap_or(0);
let mut r = 0;
SETUP_SIGNAL_HANDLER.call_once(|| {
r = unsafe { setupsignalhandler(pid_signed, pgid_signed) };
});
if r < 0 {
return Err(io::Error::last_os_error());
}
Ok(())
}
/// Restores the original signal handlers.
///
/// # Safety
///
/// This touches global states, and thus synchronized as a one-time
/// initialization function.
pub fn restore_signal_handler_once() -> io::Result<()> {
let mut r = 0;
RESTORE_SIGNAL_HANDLER.call_once(|| {
r = unsafe { restoresignalhandler() };
});
if r < 0 {
return Err(io::Error::last_os_error());
}
Ok(())
}