##// END OF EJS Templates
narrow: widen when files are excluded by sparse and not included by narrow...
narrow: widen when files are excluded by sparse and not included by narrow In a repo where some directories are included by narrow and the complement are excluded by sparse, it was previously impossible to widen either because trying to widen narrow would complain that the requested files are outside the sparse checkout and trying to widen sparse would complain that the requested files are outside the narrow checkout. This changes the `hg tracked --addinclude` command to only actually update any newly accessible files in the dirstate if they are also accessible via sparse. Differential Revision: https://phab.mercurial-scm.org/D10734

File last commit:

r47161:18a261b1 default
r48084:e4ccc341 default
Show More
nodemap.rs
1069 lines | 35.0 KiB | application/rls-services+xml | RustLexer
// Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
// and Mercurial contributors
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Indexing facilities for fast retrieval of `Revision` from `Node`
//!
//! This provides a variation on the 16-ary radix tree that is
//! provided as "nodetree" in revlog.c, ready for append-only persistence
//! on disk.
//!
//! Following existing implicit conventions, the "nodemap" terminology
//! is used in a more abstract context.
use super::{
node::NULL_NODE, Node, NodePrefix, Revision, RevlogIndex, NULL_REVISION,
};
use bytes_cast::{unaligned, BytesCast};
use std::cmp::max;
use std::fmt;
use std::mem::{self, align_of, size_of};
use std::ops::Deref;
use std::ops::Index;
#[derive(Debug, PartialEq)]
pub enum NodeMapError {
MultipleResults,
/// A `Revision` stored in the nodemap could not be found in the index
RevisionNotInIndex(Revision),
}
/// Mapping system from Mercurial nodes to revision numbers.
///
/// ## `RevlogIndex` and `NodeMap`
///
/// One way to think about their relationship is that
/// the `NodeMap` is a prefix-oriented reverse index of the `Node` information
/// carried by a [`RevlogIndex`].
///
/// Many of the methods in this trait take a `RevlogIndex` argument
/// which is used for validation of their results. This index must naturally
/// be the one the `NodeMap` is about, and it must be consistent.
///
/// Notably, the `NodeMap` must not store
/// information about more `Revision` values than there are in the index.
/// In these methods, an encountered `Revision` is not in the index, a
/// [`RevisionNotInIndex`] error is returned.
///
/// In insert operations, the rule is thus that the `NodeMap` must always
/// be updated after the `RevlogIndex`
/// be updated first, and the `NodeMap` second.
///
/// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex
/// [`RevlogIndex`]: ../trait.RevlogIndex.html
pub trait NodeMap {
/// Find the unique `Revision` having the given `Node`
///
/// If no Revision matches the given `Node`, `Ok(None)` is returned.
fn find_node(
&self,
index: &impl RevlogIndex,
node: &Node,
) -> Result<Option<Revision>, NodeMapError> {
self.find_bin(index, node.into())
}
/// Find the unique Revision whose `Node` starts with a given binary prefix
///
/// If no Revision matches the given prefix, `Ok(None)` is returned.
///
/// If several Revisions match the given prefix, a [`MultipleResults`]
/// error is returned.
fn find_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefix,
) -> Result<Option<Revision>, NodeMapError>;
/// Give the size of the shortest node prefix that determines
/// the revision uniquely.
///
/// From a binary node prefix, if it is matched in the node map, this
/// returns the number of hexadecimal digits that would had sufficed
/// to find the revision uniquely.
///
/// Returns `None` if no `Revision` could be found for the prefix.
///
/// If several Revisions match the given prefix, a [`MultipleResults`]
/// error is returned.
fn unique_prefix_len_bin<'a>(
&self,
idx: &impl RevlogIndex,
node_prefix: NodePrefix,
) -> Result<Option<usize>, NodeMapError>;
/// Same as `unique_prefix_len_bin`, with a full `Node` as input
fn unique_prefix_len_node(
&self,
idx: &impl RevlogIndex,
node: &Node,
) -> Result<Option<usize>, NodeMapError> {
self.unique_prefix_len_bin(idx, node.into())
}
}
pub trait MutableNodeMap: NodeMap {
fn insert<I: RevlogIndex>(
&mut self,
index: &I,
node: &Node,
rev: Revision,
) -> Result<(), NodeMapError>;
}
/// Low level NodeTree [`Blocks`] elements
///
/// These are exactly as for instance on persistent storage.
type RawElement = unaligned::I32Be;
/// High level representation of values in NodeTree
/// [`Blocks`](struct.Block.html)
///
/// This is the high level representation that most algorithms should
/// use.
#[derive(Clone, Debug, Eq, PartialEq)]
enum Element {
Rev(Revision),
Block(usize),
None,
}
impl From<RawElement> for Element {
/// Conversion from low level representation, after endianness conversion.
///
/// See [`Block`](struct.Block.html) for explanation about the encoding.
fn from(raw: RawElement) -> Element {
let int = raw.get();
if int >= 0 {
Element::Block(int as usize)
} else if int == -1 {
Element::None
} else {
Element::Rev(-int - 2)
}
}
}
impl From<Element> for RawElement {
fn from(element: Element) -> RawElement {
RawElement::from(match element {
Element::None => 0,
Element::Block(i) => i as i32,
Element::Rev(rev) => -rev - 2,
})
}
}
/// A logical block of the `NodeTree`, packed with a fixed size.
///
/// These are always used in container types implementing `Index<Block>`,
/// such as `&Block`
///
/// As an array of integers, its ith element encodes that the
/// ith potential edge from the block, representing the ith hexadecimal digit
/// (nybble) `i` is either:
///
/// - absent (value -1)
/// - another `Block` in the same indexable container (value ≥ 0)
/// - a `Revision` leaf (value ≤ -2)
///
/// Endianness has to be fixed for consistency on shared storage across
/// different architectures.
///
/// A key difference with the C `nodetree` is that we need to be
/// able to represent the [`Block`] at index 0, hence -1 is the empty marker
/// rather than 0 and the `Revision` range upper limit of -2 instead of -1.
///
/// Another related difference is that `NULL_REVISION` (-1) is not
/// represented at all, because we want an immutable empty nodetree
/// to be valid.
const ELEMENTS_PER_BLOCK: usize = 16; // number of different values in a nybble
#[derive(Copy, Clone, BytesCast, PartialEq)]
#[repr(transparent)]
pub struct Block([RawElement; ELEMENTS_PER_BLOCK]);
impl Block {
fn new() -> Self {
let absent_node = RawElement::from(-1);
Block([absent_node; ELEMENTS_PER_BLOCK])
}
fn get(&self, nybble: u8) -> Element {
self.0[nybble as usize].into()
}
fn set(&mut self, nybble: u8, element: Element) {
self.0[nybble as usize] = element.into()
}
}
impl fmt::Debug for Block {
/// sparse representation for testing and debugging purposes
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map()
.entries((0..16).filter_map(|i| match self.get(i) {
Element::None => None,
element => Some((i, element)),
}))
.finish()
}
}
/// A mutable 16-radix tree with the root block logically at the end
///
/// Because of the append only nature of our node trees, we need to
/// keep the original untouched and store new blocks separately.
///
/// The mutable root `Block` is kept apart so that we don't have to rebump
/// it on each insertion.
pub struct NodeTree {
readonly: Box<dyn Deref<Target = [Block]> + Send>,
growable: Vec<Block>,
root: Block,
masked_inner_blocks: usize,
}
impl Index<usize> for NodeTree {
type Output = Block;
fn index(&self, i: usize) -> &Block {
let ro_len = self.readonly.len();
if i < ro_len {
&self.readonly[i]
} else if i == ro_len + self.growable.len() {
&self.root
} else {
&self.growable[i - ro_len]
}
}
}
/// Return `None` unless the `Node` for `rev` has given prefix in `index`.
fn has_prefix_or_none(
idx: &impl RevlogIndex,
prefix: NodePrefix,
rev: Revision,
) -> Result<Option<Revision>, NodeMapError> {
idx.node(rev)
.ok_or_else(|| NodeMapError::RevisionNotInIndex(rev))
.map(|node| {
if prefix.is_prefix_of(node) {
Some(rev)
} else {
None
}
})
}
/// validate that the candidate's node starts indeed with given prefix,
/// and treat ambiguities related to `NULL_REVISION`.
///
/// From the data in the NodeTree, one can only conclude that some
/// revision is the only one for a *subprefix* of the one being looked up.
fn validate_candidate(
idx: &impl RevlogIndex,
prefix: NodePrefix,
candidate: (Option<Revision>, usize),
) -> Result<(Option<Revision>, usize), NodeMapError> {
let (rev, steps) = candidate;
if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) {
rev.map_or(Ok((None, steps)), |r| {
has_prefix_or_none(idx, prefix, r)
.map(|opt| (opt, max(steps, nz_nybble + 1)))
})
} else {
// the prefix is only made of zeros; NULL_REVISION always matches it
// and any other *valid* result is an ambiguity
match rev {
None => Ok((Some(NULL_REVISION), steps + 1)),
Some(r) => match has_prefix_or_none(idx, prefix, r)? {
None => Ok((Some(NULL_REVISION), steps + 1)),
_ => Err(NodeMapError::MultipleResults),
},
}
}
}
impl NodeTree {
/// Initiate a NodeTree from an immutable slice-like of `Block`
///
/// We keep `readonly` and clone its root block if it isn't empty.
fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
let root = readonly.last().cloned().unwrap_or_else(Block::new);
NodeTree {
readonly,
growable: Vec::new(),
root,
masked_inner_blocks: 0,
}
}
/// Create from an opaque bunch of bytes
///
/// The created `NodeTreeBytes` from `buffer`,
/// of which exactly `amount` bytes are used.
///
/// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
/// - `offset` allows for the final file format to include fixed data
/// (generation number, behavioural flags)
/// - `amount` is expressed in bytes, and is not automatically derived from
/// `bytes`, so that a caller that manages them atomically can perform
/// temporary disk serializations and still rollback easily if needed.
/// First use-case for this would be to support Mercurial shell hooks.
///
/// panics if `buffer` is smaller than `amount`
pub fn load_bytes(
bytes: Box<dyn Deref<Target = [u8]> + Send>,
amount: usize,
) -> Self {
NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
}
/// Retrieve added `Block` and the original immutable data
pub fn into_readonly_and_added(
self,
) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
let mut vec = self.growable;
let readonly = self.readonly;
if readonly.last() != Some(&self.root) {
vec.push(self.root);
}
(readonly, vec)
}
/// Retrieve added `Blocks` as bytes, ready to be written to persistent
/// storage
pub fn into_readonly_and_added_bytes(
self,
) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
let (readonly, vec) = self.into_readonly_and_added();
// Prevent running `v`'s destructor so we are in complete control
// of the allocation.
let vec = mem::ManuallyDrop::new(vec);
// Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
// bytes, so this is perfectly safe.
let bytes = unsafe {
// Check for compatible allocation layout.
// (Optimized away by constant-folding + dead code elimination.)
assert_eq!(size_of::<Block>(), 64);
assert_eq!(align_of::<Block>(), 1);
// /!\ Any use of `vec` after this is use-after-free.
// TODO: use `into_raw_parts` once stabilized
Vec::from_raw_parts(
vec.as_ptr() as *mut u8,
vec.len() * size_of::<Block>(),
vec.capacity() * size_of::<Block>(),
)
};
(readonly, bytes)
}
/// Total number of blocks
fn len(&self) -> usize {
self.readonly.len() + self.growable.len() + 1
}
/// Implemented for completeness
///
/// A `NodeTree` always has at least the mutable root block.
#[allow(dead_code)]
fn is_empty(&self) -> bool {
false
}
/// Main working method for `NodeTree` searches
///
/// The first returned value is the result of analysing `NodeTree` data
/// *alone*: whereas `None` guarantees that the given prefix is absent
/// from the `NodeTree` data (but still could match `NULL_NODE`), with
/// `Some(rev)`, it is to be understood that `rev` is the unique `Revision`
/// that could match the prefix. Actually, all that can be inferred from
/// the `NodeTree` data is that `rev` is the revision with the longest
/// common node prefix with the given prefix.
///
/// The second returned value is the size of the smallest subprefix
/// of `prefix` that would give the same result, i.e. not the
/// `MultipleResults` error variant (again, using only the data of the
/// `NodeTree`).
fn lookup(
&self,
prefix: NodePrefix,
) -> Result<(Option<Revision>, usize), NodeMapError> {
for (i, visit_item) in self.visit(prefix).enumerate() {
if let Some(opt) = visit_item.final_revision() {
return Ok((opt, i + 1));
}
}
Err(NodeMapError::MultipleResults)
}
fn visit<'n>(&'n self, prefix: NodePrefix) -> NodeTreeVisitor<'n> {
NodeTreeVisitor {
nt: self,
prefix,
visit: self.len() - 1,
nybble_idx: 0,
done: false,
}
}
/// Return a mutable reference for `Block` at index `idx`.
///
/// If `idx` lies in the immutable area, then the reference is to
/// a newly appended copy.
///
/// Returns (new_idx, glen, mut_ref) where
///
/// - `new_idx` is the index of the mutable `Block`
/// - `mut_ref` is a mutable reference to the mutable Block.
/// - `glen` is the new length of `self.growable`
///
/// Note: the caller wouldn't be allowed to query `self.growable.len()`
/// itself because of the mutable borrow taken with the returned `Block`
fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
let ro_blocks = &self.readonly;
let ro_len = ro_blocks.len();
let glen = self.growable.len();
if idx < ro_len {
self.masked_inner_blocks += 1;
self.growable.push(ro_blocks[idx]);
(glen + ro_len, &mut self.growable[glen], glen + 1)
} else if glen + ro_len == idx {
(idx, &mut self.root, glen)
} else {
(idx, &mut self.growable[idx - ro_len], glen)
}
}
/// Main insertion method
///
/// This will dive in the node tree to find the deepest `Block` for
/// `node`, split it as much as needed and record `node` in there.
/// The method then backtracks, updating references in all the visited
/// blocks from the root.
///
/// All the mutated `Block` are copied first to the growable part if
/// needed. That happens for those in the immutable part except the root.
pub fn insert<I: RevlogIndex>(
&mut self,
index: &I,
node: &Node,
rev: Revision,
) -> Result<(), NodeMapError> {
let ro_len = &self.readonly.len();
let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
let read_nybbles = visit_steps.len();
// visit_steps cannot be empty, since we always visit the root block
let deepest = visit_steps.pop().unwrap();
let (mut block_idx, mut block, mut glen) =
self.mutable_block(deepest.block_idx);
if let Element::Rev(old_rev) = deepest.element {
let old_node = index
.node(old_rev)
.ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?;
if old_node == node {
return Ok(()); // avoid creating lots of useless blocks
}
// Looping over the tail of nybbles in both nodes, creating
// new blocks until we find the difference
let mut new_block_idx = ro_len + glen;
let mut nybble = deepest.nybble;
for nybble_pos in read_nybbles..node.nybbles_len() {
block.set(nybble, Element::Block(new_block_idx));
let new_nybble = node.get_nybble(nybble_pos);
let old_nybble = old_node.get_nybble(nybble_pos);
if old_nybble == new_nybble {
self.growable.push(Block::new());
block = &mut self.growable[glen];
glen += 1;
new_block_idx += 1;
nybble = new_nybble;
} else {
let mut new_block = Block::new();
new_block.set(old_nybble, Element::Rev(old_rev));
new_block.set(new_nybble, Element::Rev(rev));
self.growable.push(new_block);
break;
}
}
} else {
// Free slot in the deepest block: no splitting has to be done
block.set(deepest.nybble, Element::Rev(rev));
}
// Backtrack over visit steps to update references
while let Some(visited) = visit_steps.pop() {
let to_write = Element::Block(block_idx);
if visit_steps.is_empty() {
self.root.set(visited.nybble, to_write);
break;
}
let (new_idx, block, _) = self.mutable_block(visited.block_idx);
if block.get(visited.nybble) == to_write {
break;
}
block.set(visited.nybble, to_write);
block_idx = new_idx;
}
Ok(())
}
/// Make the whole `NodeTree` logically empty, without touching the
/// immutable part.
pub fn invalidate_all(&mut self) {
self.root = Block::new();
self.growable = Vec::new();
self.masked_inner_blocks = self.readonly.len();
}
/// Return the number of blocks in the readonly part that are currently
/// masked in the mutable part.
///
/// The `NodeTree` structure has no efficient way to know how many blocks
/// are already unreachable in the readonly part.
///
/// After a call to `invalidate_all()`, the returned number can be actually
/// bigger than the whole readonly part, a conventional way to mean that
/// all the readonly blocks have been masked. This is what is really
/// useful to the caller and does not require to know how many were
/// actually unreachable to begin with.
pub fn masked_readonly_blocks(&self) -> usize {
if let Some(readonly_root) = self.readonly.last() {
if readonly_root == &self.root {
return 0;
}
} else {
return 0;
}
self.masked_inner_blocks + 1
}
}
pub struct NodeTreeBytes {
buffer: Box<dyn Deref<Target = [u8]> + Send>,
len_in_blocks: usize,
}
impl NodeTreeBytes {
fn new(
buffer: Box<dyn Deref<Target = [u8]> + Send>,
amount: usize,
) -> Self {
assert!(buffer.len() >= amount);
let len_in_blocks = amount / size_of::<Block>();
NodeTreeBytes {
buffer,
len_in_blocks,
}
}
}
impl Deref for NodeTreeBytes {
type Target = [Block];
fn deref(&self) -> &[Block] {
Block::slice_from_bytes(&self.buffer, self.len_in_blocks)
// `NodeTreeBytes::new` already asserted that `self.buffer` is
// large enough.
.unwrap()
.0
}
}
struct NodeTreeVisitor<'n> {
nt: &'n NodeTree,
prefix: NodePrefix,
visit: usize,
nybble_idx: usize,
done: bool,
}
#[derive(Debug, PartialEq, Clone)]
struct NodeTreeVisitItem {
block_idx: usize,
nybble: u8,
element: Element,
}
impl<'n> Iterator for NodeTreeVisitor<'n> {
type Item = NodeTreeVisitItem;
fn next(&mut self) -> Option<Self::Item> {
if self.done || self.nybble_idx >= self.prefix.nybbles_len() {
return None;
}
let nybble = self.prefix.get_nybble(self.nybble_idx);
self.nybble_idx += 1;
let visit = self.visit;
let element = self.nt[visit].get(nybble);
if let Element::Block(idx) = element {
self.visit = idx;
} else {
self.done = true;
}
Some(NodeTreeVisitItem {
block_idx: visit,
nybble,
element,
})
}
}
impl NodeTreeVisitItem {
// Return `Some(opt)` if this item is final, with `opt` being the
// `Revision` that it may represent.
//
// If the item is not terminal, return `None`
fn final_revision(&self) -> Option<Option<Revision>> {
match self.element {
Element::Block(_) => None,
Element::Rev(r) => Some(Some(r)),
Element::None => Some(None),
}
}
}
impl From<Vec<Block>> for NodeTree {
fn from(vec: Vec<Block>) -> Self {
Self::new(Box::new(vec))
}
}
impl fmt::Debug for NodeTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let readonly: &[Block] = &*self.readonly;
write!(
f,
"readonly: {:?}, growable: {:?}, root: {:?}",
readonly, self.growable, self.root
)
}
}
impl Default for NodeTree {
/// Create a fully mutable empty NodeTree
fn default() -> Self {
NodeTree::new(Box::new(Vec::new()))
}
}
impl NodeMap for NodeTree {
fn find_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefix,
) -> Result<Option<Revision>, NodeMapError> {
validate_candidate(idx, prefix, self.lookup(prefix)?)
.map(|(opt, _shortest)| opt)
}
fn unique_prefix_len_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefix,
) -> Result<Option<usize>, NodeMapError> {
validate_candidate(idx, prefix, self.lookup(prefix)?)
.map(|(opt, shortest)| opt.map(|_rev| shortest))
}
}
#[cfg(test)]
mod tests {
use super::NodeMapError::*;
use super::*;
use crate::revlog::node::{hex_pad_right, Node};
use std::collections::HashMap;
/// Creates a `Block` using a syntax close to the `Debug` output
macro_rules! block {
{$($nybble:tt : $variant:ident($val:tt)),*} => (
{
let mut block = Block::new();
$(block.set($nybble, Element::$variant($val)));*;
block
}
)
}
#[test]
fn test_block_debug() {
let mut block = Block::new();
block.set(1, Element::Rev(3));
block.set(10, Element::Block(0));
assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
}
#[test]
fn test_block_macro() {
let block = block! {5: Block(2)};
assert_eq!(format!("{:?}", block), "{5: Block(2)}");
let block = block! {13: Rev(15), 5: Block(2)};
assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
}
#[test]
fn test_raw_block() {
let mut raw = [255u8; 64];
let mut counter = 0;
for val in [0_i32, 15, -2, -1, -3].iter() {
for byte in val.to_be_bytes().iter() {
raw[counter] = *byte;
counter += 1;
}
}
let (block, _) = Block::from_bytes(&raw).unwrap();
assert_eq!(block.get(0), Element::Block(0));
assert_eq!(block.get(1), Element::Block(15));
assert_eq!(block.get(3), Element::None);
assert_eq!(block.get(2), Element::Rev(0));
assert_eq!(block.get(4), Element::Rev(1));
}
type TestIndex = HashMap<Revision, Node>;
impl RevlogIndex for TestIndex {
fn node(&self, rev: Revision) -> Option<&Node> {
self.get(&rev)
}
fn len(&self) -> usize {
self.len()
}
}
/// Pad hexadecimal Node prefix with zeros on the right
///
/// This avoids having to repeatedly write very long hexadecimal
/// strings for test data, and brings actual hash size independency.
#[cfg(test)]
fn pad_node(hex: &str) -> Node {
Node::from_hex(&hex_pad_right(hex)).unwrap()
}
/// Pad hexadecimal Node prefix with zeros on the right, then insert
fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
idx.insert(rev, pad_node(hex));
}
fn sample_nodetree() -> NodeTree {
NodeTree::from(vec![
block![0: Rev(9)],
block![0: Rev(0), 1: Rev(9)],
block![0: Block(1), 1:Rev(1)],
])
}
fn hex(s: &str) -> NodePrefix {
NodePrefix::from_hex(s).unwrap()
}
#[test]
fn test_nt_debug() {
let nt = sample_nodetree();
assert_eq!(
format!("{:?}", nt),
"readonly: \
[{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
growable: [], \
root: {0: Block(1), 1: Rev(1)}",
);
}
#[test]
fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
let mut idx: TestIndex = HashMap::new();
pad_insert(&mut idx, 1, "1234deadcafe");
let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
assert_eq!(nt.find_bin(&idx, hex("1"))?, Some(1));
assert_eq!(nt.find_bin(&idx, hex("12"))?, Some(1));
assert_eq!(nt.find_bin(&idx, hex("1234de"))?, Some(1));
assert_eq!(nt.find_bin(&idx, hex("1a"))?, None);
assert_eq!(nt.find_bin(&idx, hex("ab"))?, None);
// and with full binary Nodes
assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1));
let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap();
assert_eq!(nt.find_node(&idx, &unknown)?, None);
Ok(())
}
#[test]
fn test_immutable_find_one_jump() {
let mut idx = TestIndex::new();
pad_insert(&mut idx, 9, "012");
pad_insert(&mut idx, 0, "00a");
let nt = sample_nodetree();
assert_eq!(nt.find_bin(&idx, hex("0")), Err(MultipleResults));
assert_eq!(nt.find_bin(&idx, hex("01")), Ok(Some(9)));
assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
assert_eq!(nt.find_bin(&idx, hex("00a")), Ok(Some(0)));
assert_eq!(nt.unique_prefix_len_bin(&idx, hex("00a")), Ok(Some(3)));
assert_eq!(nt.find_bin(&idx, hex("000")), Ok(Some(NULL_REVISION)));
}
#[test]
fn test_mutated_find() -> Result<(), NodeMapError> {
let mut idx = TestIndex::new();
pad_insert(&mut idx, 9, "012");
pad_insert(&mut idx, 0, "00a");
pad_insert(&mut idx, 2, "cafe");
pad_insert(&mut idx, 3, "15");
pad_insert(&mut idx, 1, "10");
let nt = NodeTree {
readonly: sample_nodetree().readonly,
growable: vec![block![0: Rev(1), 5: Rev(3)]],
root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
masked_inner_blocks: 1,
};
assert_eq!(nt.find_bin(&idx, hex("10"))?, Some(1));
assert_eq!(nt.find_bin(&idx, hex("c"))?, Some(2));
assert_eq!(nt.unique_prefix_len_bin(&idx, hex("c"))?, Some(1));
assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
assert_eq!(nt.find_bin(&idx, hex("000"))?, Some(NULL_REVISION));
assert_eq!(nt.unique_prefix_len_bin(&idx, hex("000"))?, Some(3));
assert_eq!(nt.find_bin(&idx, hex("01"))?, Some(9));
assert_eq!(nt.masked_readonly_blocks(), 2);
Ok(())
}
struct TestNtIndex {
index: TestIndex,
nt: NodeTree,
}
impl TestNtIndex {
fn new() -> Self {
TestNtIndex {
index: HashMap::new(),
nt: NodeTree::default(),
}
}
fn insert(
&mut self,
rev: Revision,
hex: &str,
) -> Result<(), NodeMapError> {
let node = pad_node(hex);
self.index.insert(rev, node.clone());
self.nt.insert(&self.index, &node, rev)?;
Ok(())
}
fn find_hex(
&self,
prefix: &str,
) -> Result<Option<Revision>, NodeMapError> {
self.nt.find_bin(&self.index, hex(prefix))
}
fn unique_prefix_len_hex(
&self,
prefix: &str,
) -> Result<Option<usize>, NodeMapError> {
self.nt.unique_prefix_len_bin(&self.index, hex(prefix))
}
/// Drain `added` and restart a new one
fn commit(self) -> Self {
let mut as_vec: Vec<Block> =
self.nt.readonly.iter().map(|block| block.clone()).collect();
as_vec.extend(self.nt.growable);
as_vec.push(self.nt.root);
Self {
index: self.index,
nt: NodeTree::from(as_vec).into(),
}
}
}
#[test]
fn test_insert_full_mutable() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
assert_eq!(idx.find_hex("1")?, Some(0));
assert_eq!(idx.find_hex("12")?, Some(0));
// let's trigger a simple split
idx.insert(1, "1a34")?;
assert_eq!(idx.nt.growable.len(), 1);
assert_eq!(idx.find_hex("12")?, Some(0));
assert_eq!(idx.find_hex("1a")?, Some(1));
// reinserting is a no_op
idx.insert(1, "1a34")?;
assert_eq!(idx.nt.growable.len(), 1);
assert_eq!(idx.find_hex("12")?, Some(0));
assert_eq!(idx.find_hex("1a")?, Some(1));
idx.insert(2, "1a01")?;
assert_eq!(idx.nt.growable.len(), 2);
assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
assert_eq!(idx.find_hex("12")?, Some(0));
assert_eq!(idx.find_hex("1a3")?, Some(1));
assert_eq!(idx.find_hex("1a0")?, Some(2));
assert_eq!(idx.find_hex("1a12")?, None);
// now let's make it split and create more than one additional block
idx.insert(3, "1a345")?;
assert_eq!(idx.nt.growable.len(), 4);
assert_eq!(idx.find_hex("1a340")?, Some(1));
assert_eq!(idx.find_hex("1a345")?, Some(3));
assert_eq!(idx.find_hex("1a341")?, None);
// there's no readonly block to mask
assert_eq!(idx.nt.masked_readonly_blocks(), 0);
Ok(())
}
#[test]
fn test_unique_prefix_len_zero_prefix() {
let mut idx = TestNtIndex::new();
idx.insert(0, "00000abcd").unwrap();
assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults));
// in the nodetree proper, this will be found at the first nybble
// yet the correct answer for unique_prefix_len is not 1, nor 1+1,
// but the first difference with `NULL_NODE`
assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
// same with odd result
idx.insert(1, "00123").unwrap();
assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3)));
assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3)));
// these are unchanged of course
assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
}
#[test]
fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
// check that the splitting loop is long enough
let mut nt_idx = TestNtIndex::new();
let nt = &mut nt_idx.nt;
let idx = &mut nt_idx.index;
let node0_hex = hex_pad_right("444444");
let mut node1_hex = hex_pad_right("444444").clone();
node1_hex.pop();
node1_hex.push('5');
let node0 = Node::from_hex(&node0_hex).unwrap();
let node1 = Node::from_hex(&node1_hex).unwrap();
idx.insert(0, node0.clone());
nt.insert(idx, &node0, 0)?;
idx.insert(1, node1.clone());
nt.insert(idx, &node1, 1)?;
assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0));
assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1));
Ok(())
}
#[test]
fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
idx.insert(1, "1235")?;
idx.insert(2, "131")?;
idx.insert(3, "cafe")?;
let mut idx = idx.commit();
assert_eq!(idx.find_hex("1234")?, Some(0));
assert_eq!(idx.find_hex("1235")?, Some(1));
assert_eq!(idx.find_hex("131")?, Some(2));
assert_eq!(idx.find_hex("cafe")?, Some(3));
// we did not add anything since init from readonly
assert_eq!(idx.nt.masked_readonly_blocks(), 0);
idx.insert(4, "123A")?;
assert_eq!(idx.find_hex("1234")?, Some(0));
assert_eq!(idx.find_hex("1235")?, Some(1));
assert_eq!(idx.find_hex("131")?, Some(2));
assert_eq!(idx.find_hex("cafe")?, Some(3));
assert_eq!(idx.find_hex("123A")?, Some(4));
// we masked blocks for all prefixes of "123", including the root
assert_eq!(idx.nt.masked_readonly_blocks(), 4);
eprintln!("{:?}", idx.nt);
idx.insert(5, "c0")?;
assert_eq!(idx.find_hex("cafe")?, Some(3));
assert_eq!(idx.find_hex("c0")?, Some(5));
assert_eq!(idx.find_hex("c1")?, None);
assert_eq!(idx.find_hex("1234")?, Some(0));
// inserting "c0" is just splitting the 'c' slot of the mutable root,
// it doesn't mask anything
assert_eq!(idx.nt.masked_readonly_blocks(), 4);
Ok(())
}
#[test]
fn test_invalidate_all() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
idx.insert(1, "1235")?;
idx.insert(2, "131")?;
idx.insert(3, "cafe")?;
let mut idx = idx.commit();
idx.nt.invalidate_all();
assert_eq!(idx.find_hex("1234")?, None);
assert_eq!(idx.find_hex("1235")?, None);
assert_eq!(idx.find_hex("131")?, None);
assert_eq!(idx.find_hex("cafe")?, None);
// all the readonly blocks have been masked, this is the
// conventional expected response
assert_eq!(idx.nt.masked_readonly_blocks(), idx.nt.readonly.len() + 1);
Ok(())
}
#[test]
fn test_into_added_empty() {
assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
assert!(sample_nodetree()
.into_readonly_and_added_bytes()
.1
.is_empty());
}
#[test]
fn test_into_added_bytes() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
let mut idx = idx.commit();
idx.insert(4, "cafe")?;
let (_, bytes) = idx.nt.into_readonly_and_added_bytes();
// only the root block has been changed
assert_eq!(bytes.len(), size_of::<Block>());
// big endian for -2
assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
// big endian for -6
assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
Ok(())
}
}