##// END OF EJS Templates
localrepo: iteratively derive local repository type...
localrepo: iteratively derive local repository type This commit implements the dynamic local repository type derivation that was explained in the recent commit bfeab472e3c0 "localrepo: create new function for instantiating a local repo object." Instead of a static localrepository class/type which must be customized after construction, we now dynamically construct a type by building up base classes/types to represent specific repository interfaces. Conceptually, the end state is similar to what was happening when various extensions would monkeypatch the __class__ of newly-constructed repo instances. However, the approach is inverted. Instead of making the instance then customizing it, we do the customization up front by influencing the behavior of the type then we instantiate that custom type. This approach gives us much more flexibility. For example, we can use completely separate classes for implementing different aspects of the repository. For example, we could have one class representing revlog-based file storage and another representing non-revlog based file storage. When then choose which implementation to use based on the presence of repo requirements. A concern with this approach is that it creates a lot more types and complexity and that complexity adds overhead. Yes, it is true that this approach will result in more types being created. Yes, this is more complicated than traditional "instantiate a static type." However, I believe the alternatives to supporting alternate storage backends are just as complicated. (Before I arrived at this solution, I had patches storing factory functions on local repo instances for e.g. constructing a file storage instance. We ended up having a handful of these. And this was logically identical to assigning custom methods. Since we were logically changing the type of the instance, I figured it would be better to just use specialized types instead of introducing levels of abstraction at run-time.) On the performance front, I don't believe that having N base classes has any significant performance overhead compared to just a single base class. Intuition says that Python will need to iterate the base classes to find an attribute. However, CPython caches method lookups: as long as the __class__ or MRO isn't changing, method attribute lookup should be constant time after first access. And non-method attributes are stored in __dict__, of which there is only 1 per object, so the number of base classes for __dict__ is irrelevant. Anyway, this commit splits up the monolithic completelocalrepository interface into sub-interfaces: 1 for file storage and 1 representing everything else. We've taught ``makelocalrepository()`` to call a series of factory functions which will produce types implementing specific interfaces. It then calls type() to create a new type from the built-up list of base types. This commit should be considered a start and not the end state. I suspect we'll hit a number of problems as we start to implement alternate storage backends: * Passing custom arguments to __init__ and setting custom attributes on __dict__. * Customizing the set of interfaces that are needed. e.g. the "readonly" intent could translate to not requesting an interface providing methods related to writing. * More ergonomic way for extensions to insert themselves so their callbacks aren't unconditionally called. * Wanting to modify vfs instances, other arguments passed to __init__. That being said, this code is usable in its current state and I'm convinced future commits will demonstrate the value in this approach. Differential Revision: https://phab.mercurial-scm.org/D4642

File last commit:

r38279:15a1e37f default
r39800:e4e88157 default
Show More
profiling.py
251 lines | 7.9 KiB | text/x-python | PythonLexer
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
from .i18n import _
from . import (
encoding,
error,
extensions,
pycompat,
util,
)
def _loadprofiler(ui, profiler):
"""load profiler extension. return profile method, or None on failure"""
extname = profiler
extensions.loadall(ui, whitelist=[extname])
try:
mod = extensions.find(extname)
except KeyError:
return None
else:
return getattr(mod, 'profile', None)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format')
field = ui.config('profiling', 'sort')
limit = ui.configint('profiling', 'limit')
climit = ui.configint('profiling', 'nested')
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(field)
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq')
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = util.timer()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
util.timer() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
from . import statprof
freq = ui.configint('profiling', 'freq')
if freq > 0:
# Cannot reset when profiler is already active. So silently no-op.
if statprof.state.profile_level == 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
track = ui.config('profiling', 'time-track')
statprof.start(mechanism='thread', track=track)
try:
yield
finally:
data = statprof.stop()
profformat = ui.config('profiling', 'statformat')
formats = {
'byline': statprof.DisplayFormats.ByLine,
'bymethod': statprof.DisplayFormats.ByMethod,
'hotpath': statprof.DisplayFormats.Hotpath,
'json': statprof.DisplayFormats.Json,
'chrome': statprof.DisplayFormats.Chrome,
}
if profformat in formats:
displayformat = formats[profformat]
else:
ui.warn(_('unknown profiler output format: %s\n') % profformat)
displayformat = statprof.DisplayFormats.Hotpath
kwargs = {}
def fraction(s):
if isinstance(s, (float, int)):
return float(s)
if s.endswith('%'):
v = float(s[:-1]) / 100
else:
v = float(s)
if 0 <= v <= 1:
return v
raise ValueError(s)
if profformat == 'chrome':
showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
showmax = ui.configwith(fraction, 'profiling', 'showmax')
kwargs.update(minthreshold=showmin, maxthreshold=showmax)
elif profformat == 'hotpath':
# inconsistent config: profiling.showmin
limit = ui.configwith(fraction, 'profiling', 'showmin', 0.05)
kwargs[r'limit'] = limit
statprof.display(fp, data=data, format=displayformat, **kwargs)
class profile(object):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
def __init__(self, ui, enabled=True):
self._ui = ui
self._output = None
self._fp = None
self._fpdoclose = True
self._profiler = None
self._enabled = enabled
self._entered = False
self._started = False
def __enter__(self):
self._entered = True
if self._enabled:
self.start()
return self
def start(self):
"""Start profiling.
The profiling will stop at the context exit.
If the profiler was already started, this has no effect."""
if not self._entered:
raise error.ProgrammingError()
if self._started:
return
self._started = True
profiler = encoding.environ.get('HGPROF')
proffn = None
if profiler is None:
profiler = self._ui.config('profiling', 'type')
if profiler not in ('ls', 'stat', 'flame'):
# try load profiler from extension with the same name
proffn = _loadprofiler(self._ui, profiler)
if proffn is None:
self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
% profiler)
profiler = 'stat'
self._output = self._ui.config('profiling', 'output')
try:
if self._output == 'blackbox':
self._fp = util.stringio()
elif self._output:
path = self._ui.expandpath(self._output)
self._fp = open(path, 'wb')
elif pycompat.iswindows:
# parse escape sequence by win32print()
class uifp(object):
def __init__(self, ui):
self._ui = ui
def write(self, data):
self._ui.write_err(data)
def flush(self):
self._ui.flush()
self._fpdoclose = False
self._fp = uifp(self._ui)
else:
self._fpdoclose = False
self._fp = self._ui.ferr
if proffn is not None:
pass
elif profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
self._profiler = proffn(self._ui, self._fp)
self._profiler.__enter__()
except: # re-raises
self._closefp()
raise
def __exit__(self, exception_type, exception_value, traceback):
propagate = None
if self._profiler is not None:
propagate = self._profiler.__exit__(exception_type, exception_value,
traceback)
if self._output == 'blackbox':
val = 'Profile:\n%s' % self._fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
self._ui.log('profile', val)
self._closefp()
return propagate
def _closefp(self):
if self._fpdoclose and self._fp is not None:
self._fp.close()