##// END OF EJS Templates
wireprotov2: define and use stream encoders...
wireprotov2: define and use stream encoders Now that we have basic support for defining stream encoding, it is time to start doing something with it. We define various classes implementing stream encoders/decoders for the defined encoding profiles. This is relatively straightforward. We teach the inputstream and outputstream classes how to encode, decode, and flush data. We then teach the clientreactor how to filter received data through the inputstream decoder. One of the features of the framing format is that streams can span requests. This is a differentiating feature from say HTTP/2, which associates streams with requests. By allowing streams to span requests, we can reuse compression context data across requests/responses. But in order to do this, we need a mechanism to "flush" the encoder at logical boundaries so that receivers receive all data where it is expected. And a "flush" event is distinct from a "finish" event from the perspective of certain compressors because a "flush" will retain compression context state whereas a "finish" operation will not. This is why encoders have both a flush() and a finish() and each uses specific flushing semantics on the underlying compressor. The added tests verify various behavior of decoders via clientreactor. These tests do test some compression behavior via use of outputstream. But for all intents and purposes, server reactor support for encoding is not yet implemented. Differential Revision: https://phab.mercurial-scm.org/D4921

File last commit:

r37144:4bd73a95 default
r40167:e6752241 default
Show More
compat.py
101 lines | 2.5 KiB | text/x-python | PythonLexer
from math import ldexp
import struct
import sys
if sys.version_info.major < 3:
from datetime import tzinfo, timedelta
class timezone(tzinfo):
def __init__(self, offset):
self.offset = offset
def utcoffset(self, dt):
return self.offset
def dst(self, dt):
return timedelta(0)
def tzname(self, dt):
return 'UTC+00:00'
def as_unicode(string):
return string.decode('utf-8')
def iteritems(self):
return self.iteritems()
def bytes_from_list(values):
return bytes(bytearray(values))
byte_as_integer = ord
timezone.utc = timezone(timedelta(0))
xrange = xrange # noqa: F821
long = long # noqa: F821
unicode = unicode # noqa: F821
else:
from datetime import timezone
def byte_as_integer(bytestr):
return bytestr[0]
def as_unicode(string):
return string
def iteritems(self):
return self.items()
xrange = range
long = int
unicode = str
bytes_from_list = bytes
if sys.version_info.major >= 3 and sys.version_info.minor >= 6:
# Python 3.6 added 16 bit floating point to struct
def pack_float16(value):
try:
return struct.pack('>Be', 0xf9, value)
except OverflowError:
return False
def unpack_float16(payload):
return struct.unpack('>e', payload)[0]
else:
def pack_float16(value):
# Based on node-cbor by hildjj
# which was based in turn on Carsten Borman's cn-cbor
u32 = struct.pack('>f', value)
u = struct.unpack('>I', u32)[0]
if u & 0x1FFF != 0:
return False
s16 = (u >> 16) & 0x8000
exponent = (u >> 23) & 0xff
mantissa = u & 0x7fffff
if 113 <= exponent <= 142:
s16 += ((exponent - 112) << 10) + (mantissa >> 13)
elif 103 <= exponent < 113:
if mantissa & ((1 << (126 - exponent)) - 1):
return False
s16 += ((mantissa + 0x800000) >> (126 - exponent))
else:
return False
return struct.pack('>BH', 0xf9, s16)
def unpack_float16(payload):
# Code adapted from RFC 7049, appendix D
def decode_single(single):
return struct.unpack("!f", struct.pack("!I", single))[0]
payload = struct.unpack('>H', payload)[0]
value = (payload & 0x7fff) << 13 | (payload & 0x8000) << 16
if payload & 0x7c00 != 0x7c00:
return ldexp(decode_single(value), 112)
return decode_single(value | 0x7f800000)