##// END OF EJS Templates
tests: use sha256line.py instead of /dev/random in test-censor.t (issue6858)...
tests: use sha256line.py instead of /dev/random in test-censor.t (issue6858) Sometimes the systems that run our test suite don't have enough entropy and they cannot produce target file of the expected size using /dev/random, which results in test failures. Switching to /dev/urandom would give us way more available data at the cost of it being less "random", but we don't really need to use entropy for this task at all, since we only care if the file size after compression is big enough to not be stored inline in the revlog. So let's use something that we already have used to generate this kind of data in other tests.

File last commit:

r44253:01ec70a8 default
r52255:e7be2ddf stable
Show More
standalone_fuzz_target_runner.cc
45 lines | 1.5 KiB | text/x-c | CppLexer
/ contrib / fuzz / standalone_fuzz_target_runner.cc
// Copyright 2017 Google Inc. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// Example of a standalone runner for "fuzz targets".
// It reads all files passed as parameters and feeds their contents
// one by one into the fuzz target (LLVMFuzzerTestOneInput).
// This runner does not do any fuzzing, but allows us to run the fuzz target
// on the test corpus (e.g. "do_stuff_test_data") or on a single file,
// e.g. the one that comes from a bug report.
#include <cassert>
#include <fstream>
#include <iostream>
#include <vector>
// Forward declare the "fuzz target" interface.
// We deliberately keep this inteface simple and header-free.
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size);
extern "C" int LLVMFuzzerInitialize(int *argc, char ***argv);
int main(int argc, char **argv)
{
LLVMFuzzerInitialize(&argc, &argv);
for (int i = 1; i < argc; i++) {
std::ifstream in(argv[i]);
in.seekg(0, in.end);
size_t length = in.tellg();
in.seekg(0, in.beg);
std::cout << "Reading " << length << " bytes from " << argv[i]
<< std::endl;
// Allocate exactly length bytes so that we reliably catch
// buffer overflows.
std::vector<char> bytes(length);
in.read(bytes.data(), bytes.size());
assert(in);
LLVMFuzzerTestOneInput(
reinterpret_cast<const uint8_t *>(bytes.data()),
bytes.size());
std::cout << "Execution successful" << std::endl;
}
return 0;
}
// no-check-code since this is from a third party