##// END OF EJS Templates
acl: refactoring...
acl: refactoring - undo class structure - make buildmatch return None for no function - use contexts properly - simplify check loop

File last commit:

r6762:f67d1468 default
r6766:e81d2bd6 default
Show More
hbisect.py
105 lines | 3.3 KiB | text/x-python | PythonLexer
# changelog bisection for mercurial
#
# Copyright 2007 Matt Mackall
# Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org>
# Inspired by git bisect, extension skeleton taken from mq.py.
#
# This software may be used and distributed according to the terms
# of the GNU General Public License, incorporated herein by reference.
from i18n import _
from node import short
import util
def bisect(changelog, state):
clparents = changelog.parentrevs
skip = dict.fromkeys([changelog.rev(n) for n in state['skip']])
def buildancestors(bad, good):
# only the earliest bad revision matters
badrev = min([changelog.rev(n) for n in bad])
goodrevs = [changelog.rev(n) for n in good]
# build ancestors array
ancestors = [[]] * (len(changelog) + 1) # an extra for [-1]
# clear good revs from array
for node in goodrevs:
ancestors[node] = None
for rev in xrange(len(changelog), -1, -1):
if ancestors[rev] is None:
for prev in clparents(rev):
ancestors[prev] = None
if ancestors[badrev] is None:
return badrev, None
return badrev, ancestors
good = 0
badrev, ancestors = buildancestors(state['bad'], state['good'])
if not ancestors: # looking for bad to good transition?
good = 1
badrev, ancestors = buildancestors(state['good'], state['bad'])
bad = changelog.node(badrev)
if not ancestors: # now we're confused
raise util.Abort(_("Inconsistent state, %s:%s is good and bad")
% (badrev, short(bad)))
# build children dict
children = {}
visit = [badrev]
candidates = []
while visit:
rev = visit.pop(0)
if ancestors[rev] == []:
candidates.append(rev)
for prev in clparents(rev):
if prev != -1:
if prev in children:
children[prev].append(rev)
else:
children[prev] = [rev]
visit.append(prev)
# have we narrowed it down to one entry?
tot = len(candidates)
if tot == 1:
return (bad, 0, good)
perfect = tot / 2
# find the best node to test
best_rev = None
best_len = -1
poison = {}
for rev in util.sort(candidates):
if rev in poison:
for c in children.get(rev, []):
poison[c] = True # poison children
continue
a = ancestors[rev] or [rev]
ancestors[rev] = None
x = len(a) # number of ancestors
y = tot - x # number of non-ancestors
value = min(x, y) # how good is this test?
if value > best_len and rev not in skip:
best_len = value
best_rev = rev
if value == perfect: # found a perfect candidate? quit early
break
if y < perfect: # all downhill from here?
for c in children.get(rev, []):
poison[c] = True # poison children
continue
for c in children.get(rev, []):
if ancestors[c]:
ancestors[c] = dict.fromkeys(ancestors[c] + a).keys()
else:
ancestors[c] = a + [c]
assert best_rev is not None
best_node = changelog.node(best_rev)
return (best_node, tot, good)