##// END OF EJS Templates
rust-cpython: mark all PyLeaked methods as unsafe...
rust-cpython: mark all PyLeaked methods as unsafe Unfortunately, these methods can be abused to obtain the inner 'static reference. The simplest (pseudo-code) example is: let leaked: PyLeaked<&'static _> = shared.leak_immutable(); let static_ref: &'static _ = &*leaked.try_borrow(py)?; // PyLeakedRef::deref() tries to bound the lifetime to itself, but // the underlying data is a &'static reference, so the returned // reference can be &'static. This problem can be easily fixed by coercing the lifetime, but there are many other ways to achieve that, and there wouldn't be a generic solution: let leaked: PyLeaked<&'static [_]> = shared.leak_immutable(); let leaked_iter: PyLeaked<slice::Iter<'static, _>> = unsafe { leaked.map(|v| v.iter()) }; let static_slice: &'static [_] = leaked_iter.try_borrow(py)?.as_slice(); So basically I failed to design the safe borrowing interface. Maybe we'll instead have to add much more restricted interface on top of the unsafe PyLeaked methods? For instance, Iterator::next() could be implemented if its Item type is not &'a (where 'a may be cheated.) Anyway, this seems not an easy issue, so it's probably better to leave the current interface as unsafe, and get broader comments while upstreaming this feature.

File last commit:

r40157:73fef626 default
r44689:e960c30d default
Show More
pool.h
84 lines | 2.5 KiB | text/x-c | CLexer
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h> /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
#include "zstd.h"
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
* Create a thread pool with at most `numThreads` threads.
* `numThreads` must be at least 1.
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem);
/*! POOL_free() :
* Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx* ctx);
/*! POOL_resize() :
* Expands or shrinks pool's number of threads.
* This is more efficient than releasing + creating a new context,
* since it tries to preserve and re-use existing threads.
* `numThreads` must be at least 1.
* @return : 0 when resize was successful,
* !0 (typically 1) if there is an error.
* note : only numThreads can be resized, queueSize remains unchanged.
*/
int POOL_resize(POOL_ctx* ctx, size_t numThreads);
/*! POOL_sizeof() :
* @return threadpool memory usage
* note : compatible with NULL (returns 0 in this case)
*/
size_t POOL_sizeof(POOL_ctx* ctx);
/*! POOL_function :
* The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void*);
/*! POOL_add() :
* Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
* Possibly blocks until there is room in the queue.
* Note : The function may be executed asynchronously,
* therefore, `opaque` must live until function has been completed.
*/
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() :
* Add the job `function(opaque)` to thread pool _if_ a worker is available.
* Returns immediately even if not (does not block).
* @return : 1 if successful, 0 if not.
*/
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
#if defined (__cplusplus)
}
#endif
#endif