##// END OF EJS Templates
perf: add command to benchmark bundle reading...
perf: add command to benchmark bundle reading Upcoming commits will be refactoring bundle2 I/O code. This commit establishes a `hg perfbundleread` command that measures how long it takes to read a bundle using various mechanisms. As a baseline, here's output from an uncompressed bundle1 bundle of my Firefox repo (7,098,622,890 bytes): ! read(8k) ! wall 0.763481 comb 0.760000 user 0.160000 sys 0.600000 (best of 6) ! read(16k) ! wall 0.644512 comb 0.640000 user 0.110000 sys 0.530000 (best of 16) ! read(32k) ! wall 0.581172 comb 0.590000 user 0.060000 sys 0.530000 (best of 18) ! read(128k) ! wall 0.535183 comb 0.530000 user 0.010000 sys 0.520000 (best of 19) ! cg1 deltaiter() ! wall 0.873500 comb 0.880000 user 0.840000 sys 0.040000 (best of 12) ! cg1 getchunks() ! wall 6.283797 comb 6.270000 user 5.570000 sys 0.700000 (best of 3) ! cg1 read(8k) ! wall 1.097173 comb 1.100000 user 0.400000 sys 0.700000 (best of 10) ! cg1 read(16k) ! wall 0.810750 comb 0.800000 user 0.200000 sys 0.600000 (best of 13) ! cg1 read(32k) ! wall 0.671215 comb 0.670000 user 0.110000 sys 0.560000 (best of 15) ! cg1 read(128k) ! wall 0.597857 comb 0.600000 user 0.020000 sys 0.580000 (best of 15) And from an uncompressed bundle2 bundle (6,070,036,163 bytes): ! read(8k) ! wall 0.676997 comb 0.680000 user 0.160000 sys 0.520000 (best of 15) ! read(16k) ! wall 0.592706 comb 0.590000 user 0.080000 sys 0.510000 (best of 17) ! read(32k) ! wall 0.529395 comb 0.530000 user 0.050000 sys 0.480000 (best of 16) ! read(128k) ! wall 0.491270 comb 0.490000 user 0.010000 sys 0.480000 (best of 19) ! bundle2 forwardchunks() ! wall 2.997131 comb 2.990000 user 2.270000 sys 0.720000 (best of 4) ! bundle2 iterparts() ! wall 12.247197 comb 10.670000 user 8.170000 sys 2.500000 (best of 3) ! bundle2 part seek() ! wall 11.761675 comb 10.500000 user 8.240000 sys 2.260000 (best of 3) ! bundle2 part read(8k) ! wall 9.116163 comb 9.110000 user 8.240000 sys 0.870000 (best of 3) ! bundle2 part read(16k) ! wall 8.984362 comb 8.970000 user 8.110000 sys 0.860000 (best of 3) ! bundle2 part read(32k) ! wall 8.758364 comb 8.740000 user 7.860000 sys 0.880000 (best of 3) ! bundle2 part read(128k) ! wall 8.749040 comb 8.730000 user 7.830000 sys 0.900000 (best of 3) We already see some interesting data. Notably that bundle2 has significant overhead compared to bundle1. This matters for e.g. stream clone bundles, which can be applied at >1Gbps. Differential Revision: https://phab.mercurial-scm.org/D1385

File last commit:

r32601:01280ec5 stable
r35108:e9661304 default
Show More
bundlespec.txt
84 lines | 2.6 KiB | text/plain | TextLexer
Mercurial supports generating standalone "bundle" files that hold repository
data. These "bundles" are typically saved locally and used later or exchanged
between different repositories, possibly on different machines. Example
commands using bundles are :hg:`bundle` and :hg:`unbundle`.
Generation of bundle files is controlled by a "bundle specification"
("bundlespec") string. This string tells the bundle generation process how
to create the bundle.
A "bundlespec" string is composed of the following elements:
type
A string denoting the bundle format to use.
compression
Denotes the compression engine to use compressing the raw bundle data.
parameters
Arbitrary key-value parameters to further control bundle generation.
A "bundlespec" string has the following formats:
<type>
The literal bundle format string is used.
<compression>-<type>
The compression engine and format are delimited by a hyphen (``-``).
Optional parameters follow the ``<type>``. Parameters are URI escaped
``key=value`` pairs. Each pair is delimited by a semicolon (``;``). The
first parameter begins after a ``;`` immediately following the ``<type>``
value.
Available Types
===============
The following bundle <type> strings are available:
v1
Produces a legacy "changegroup" version 1 bundle.
This format is compatible with nearly all Mercurial clients because it is
the oldest. However, it has some limitations, which is why it is no longer
the default for new repositories.
``v1`` bundles can be used with modern repositories using the "generaldelta"
storage format. However, it may take longer to produce the bundle and the
resulting bundle may be significantly larger than a ``v2`` bundle.
``v1`` bundles can only use the ``gzip``, ``bzip2``, and ``none`` compression
formats.
v2
Produces a version 2 bundle.
Version 2 bundles are an extensible format that can store additional
repository data (such as bookmarks and phases information) and they can
store data more efficiently, resulting in smaller bundles.
Version 2 bundles can also use modern compression engines, such as
``zstd``, making them faster to compress and often smaller.
Available Compression Engines
=============================
The following bundle <compression> engines can be used:
.. bundlecompressionmarker
Examples
========
``v2``
Produce a ``v2`` bundle using default options, including compression.
``none-v1``
Produce a ``v1`` bundle with no compression.
``zstd-v2``
Produce a ``v2`` bundle with zstandard compression using default
settings.
``zstd-v1``
This errors because ``zstd`` is not supported for ``v1`` types.