##// END OF EJS Templates
perf: add command to benchmark bundle reading...
perf: add command to benchmark bundle reading Upcoming commits will be refactoring bundle2 I/O code. This commit establishes a `hg perfbundleread` command that measures how long it takes to read a bundle using various mechanisms. As a baseline, here's output from an uncompressed bundle1 bundle of my Firefox repo (7,098,622,890 bytes): ! read(8k) ! wall 0.763481 comb 0.760000 user 0.160000 sys 0.600000 (best of 6) ! read(16k) ! wall 0.644512 comb 0.640000 user 0.110000 sys 0.530000 (best of 16) ! read(32k) ! wall 0.581172 comb 0.590000 user 0.060000 sys 0.530000 (best of 18) ! read(128k) ! wall 0.535183 comb 0.530000 user 0.010000 sys 0.520000 (best of 19) ! cg1 deltaiter() ! wall 0.873500 comb 0.880000 user 0.840000 sys 0.040000 (best of 12) ! cg1 getchunks() ! wall 6.283797 comb 6.270000 user 5.570000 sys 0.700000 (best of 3) ! cg1 read(8k) ! wall 1.097173 comb 1.100000 user 0.400000 sys 0.700000 (best of 10) ! cg1 read(16k) ! wall 0.810750 comb 0.800000 user 0.200000 sys 0.600000 (best of 13) ! cg1 read(32k) ! wall 0.671215 comb 0.670000 user 0.110000 sys 0.560000 (best of 15) ! cg1 read(128k) ! wall 0.597857 comb 0.600000 user 0.020000 sys 0.580000 (best of 15) And from an uncompressed bundle2 bundle (6,070,036,163 bytes): ! read(8k) ! wall 0.676997 comb 0.680000 user 0.160000 sys 0.520000 (best of 15) ! read(16k) ! wall 0.592706 comb 0.590000 user 0.080000 sys 0.510000 (best of 17) ! read(32k) ! wall 0.529395 comb 0.530000 user 0.050000 sys 0.480000 (best of 16) ! read(128k) ! wall 0.491270 comb 0.490000 user 0.010000 sys 0.480000 (best of 19) ! bundle2 forwardchunks() ! wall 2.997131 comb 2.990000 user 2.270000 sys 0.720000 (best of 4) ! bundle2 iterparts() ! wall 12.247197 comb 10.670000 user 8.170000 sys 2.500000 (best of 3) ! bundle2 part seek() ! wall 11.761675 comb 10.500000 user 8.240000 sys 2.260000 (best of 3) ! bundle2 part read(8k) ! wall 9.116163 comb 9.110000 user 8.240000 sys 0.870000 (best of 3) ! bundle2 part read(16k) ! wall 8.984362 comb 8.970000 user 8.110000 sys 0.860000 (best of 3) ! bundle2 part read(32k) ! wall 8.758364 comb 8.740000 user 7.860000 sys 0.880000 (best of 3) ! bundle2 part read(128k) ! wall 8.749040 comb 8.730000 user 7.830000 sys 0.900000 (best of 3) We already see some interesting data. Notably that bundle2 has significant overhead compared to bundle1. This matters for e.g. stream clone bundles, which can be applied at >1Gbps. Differential Revision: https://phab.mercurial-scm.org/D1385

File last commit:

r29663:7ce05671 stable
r35108:e9661304 default
Show More
scripting.txt
174 lines | 6.7 KiB | text/plain | TextLexer
It is common for machines (as opposed to humans) to consume Mercurial.
This help topic describes some of the considerations for interfacing
machines with Mercurial.
Choosing an Interface
=====================
Machines have a choice of several methods to interface with Mercurial.
These include:
- Executing the ``hg`` process
- Querying a HTTP server
- Calling out to a command server
Executing ``hg`` processes is very similar to how humans interact with
Mercurial in the shell. It should already be familiar to you.
:hg:`serve` can be used to start a server. By default, this will start
a "hgweb" HTTP server. This HTTP server has support for machine-readable
output, such as JSON. For more, see :hg:`help hgweb`.
:hg:`serve` can also start a "command server." Clients can connect
to this server and issue Mercurial commands over a special protocol.
For more details on the command server, including links to client
libraries, see https://www.mercurial-scm.org/wiki/CommandServer.
:hg:`serve` based interfaces (the hgweb and command servers) have the
advantage over simple ``hg`` process invocations in that they are
likely more efficient. This is because there is significant overhead
to spawn new Python processes.
.. tip::
If you need to invoke several ``hg`` processes in short order and/or
performance is important to you, use of a server-based interface
is highly recommended.
Environment Variables
=====================
As documented in :hg:`help environment`, various environment variables
influence the operation of Mercurial. The following are particularly
relevant for machines consuming Mercurial:
HGPLAIN
If not set, Mercurial's output could be influenced by configuration
settings that impact its encoding, verbose mode, localization, etc.
It is highly recommended for machines to set this variable when
invoking ``hg`` processes.
HGENCODING
If not set, the locale used by Mercurial will be detected from the
environment. If the determined locale does not support display of
certain characters, Mercurial may render these character sequences
incorrectly (often by using "?" as a placeholder for invalid
characters in the current locale).
Explicitly setting this environment variable is a good practice to
guarantee consistent results. "utf-8" is a good choice on UNIX-like
environments.
HGRCPATH
If not set, Mercurial will inherit config options from config files
using the process described in :hg:`help config`. This includes
inheriting user or system-wide config files.
When utmost control over the Mercurial configuration is desired, the
value of ``HGRCPATH`` can be set to an explicit file with known good
configs. In rare cases, the value can be set to an empty file or the
null device (often ``/dev/null``) to bypass loading of any user or
system config files. Note that these approaches can have unintended
consequences, as the user and system config files often define things
like the username and extensions that may be required to interface
with a repository.
Consuming Command Output
========================
It is common for machines to need to parse the output of Mercurial
commands for relevant data. This section describes the various
techniques for doing so.
Parsing Raw Command Output
--------------------------
Likely the simplest and most effective solution for consuming command
output is to simply invoke ``hg`` commands as you would as a user and
parse their output.
The output of many commands can easily be parsed with tools like
``grep``, ``sed``, and ``awk``.
A potential downside with parsing command output is that the output
of commands can change when Mercurial is upgraded. While Mercurial
does generally strive for strong backwards compatibility, command
output does occasionally change. Having tests for your automated
interactions with ``hg`` commands is generally recommended, but is
even more important when raw command output parsing is involved.
Using Templates to Control Output
---------------------------------
Many ``hg`` commands support templatized output via the
``-T/--template`` argument. For more, see :hg:`help templates`.
Templates are useful for explicitly controlling output so that
you get exactly the data you want formatted how you want it. For
example, ``log -T {node}\n`` can be used to print a newline
delimited list of changeset nodes instead of a human-tailored
output containing authors, dates, descriptions, etc.
.. tip::
If parsing raw command output is too complicated, consider
using templates to make your life easier.
The ``-T/--template`` argument allows specifying pre-defined styles.
Mercurial ships with the machine-readable styles ``json`` and ``xml``,
which provide JSON and XML output, respectively. These are useful for
producing output that is machine readable as-is.
.. important::
The ``json`` and ``xml`` styles are considered experimental. While
they may be attractive to use for easily obtaining machine-readable
output, their behavior may change in subsequent versions.
These styles may also exhibit unexpected results when dealing with
certain encodings. Mercurial treats things like filenames as a
series of bytes and normalizing certain byte sequences to JSON
or XML with certain encoding settings can lead to surprises.
Command Server Output
---------------------
If using the command server to interact with Mercurial, you are likely
using an existing library/API that abstracts implementation details of
the command server. If so, this interface layer may perform parsing for
you, saving you the work of implementing it yourself.
Output Verbosity
----------------
Commands often have varying output verbosity, even when machine
readable styles are being used (e.g. ``-T json``). Adding
``-v/--verbose`` and ``--debug`` to the command's arguments can
increase the amount of data exposed by Mercurial.
An alternate way to get the data you need is by explicitly specifying
a template.
Other Topics
============
revsets
Revisions sets is a functional query language for selecting a set
of revisions. Think of it as SQL for Mercurial repositories. Revsets
are useful for querying repositories for specific data.
See :hg:`help revsets` for more.
share extension
The ``share`` extension provides functionality for sharing
repository data across several working copies. It can even
automatically "pool" storage for logically related repositories when
cloning.
Configuring the ``share`` extension can lead to significant resource
utilization reduction, particularly around disk space and the
network. This is especially true for continuous integration (CI)
environments.
See :hg:`help -e share` for more.