##// END OF EJS Templates
revlog: add a mechanism to verify expected file position before appending...
revlog: add a mechanism to verify expected file position before appending If someone uses `hg debuglocks`, or some non-hg process writes to the .hg directory without respecting the locks, or if the repo's on a networked filesystem, it's possible for the revlog code to write out corrupted data. The form of this corruption can vary depending on what data was written and how that happened. We are in the "networked filesystem" case (though I've had users also do this to themselves with the "`hg debuglocks`" scenario), and most often see this with the changelog. What ends up happening is we produce two items (let's call them rev1 and rev2) in the .i file that have the same linkrev, baserev, and offset into the .d file, while the data in the .d file is appended properly. rev2's compressed_size is accurate for rev2, but when we go to decompress the data in the .d file, we use the offset that's recorded in the index file, which is the same as rev1, and attempt to decompress rev2.compressed_size bytes of rev1's data. This usually does not succeed. :) When using inline data, this also fails, though I haven't investigated why too closely. This shows up as a "patch decode" error. I believe what's happening there is that we're basically ignoring the offset field, getting the data properly, but since baserev != rev, it thinks this is a delta based on rev (instead of a full text) and can't actually apply it as such. For now, I'm going to make this an optional component and default it to entirely off. I may increase the default severity of this in the future, once I've enabled it for my users and we gain more experience with it. Luckily, most of my users have a versioned filesystem and can roll back to before the corruption has been written, it's just a hassle to do so and not everyone knows how (so it's a support burden). Users on other filesystems will not have that luxury, and this can cause them to have a corrupted repository that they are unlikely to know how to resolve, and they'll see this as a data-loss event. Refusing to create the corruption is a much better user experience. This mechanism is not perfect. There may be false-negatives (racy writes that are not detected). There should not be any false-positives (non-racy writes that are detected as such). This is not a mechanism that makes putting a repo on a networked filesystem "safe" or "supported", just *less* likely to cause corruption. Differential Revision: https://phab.mercurial-scm.org/D9952

File last commit:

r44398:f98f0e3d default
r47349:e9901d01 default
Show More
discovery.rs
161 lines | 5.7 KiB | application/rls-services+xml | RustLexer
// discovery.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Bindings for the `hg::discovery` module provided by the
//! `hg-core` crate. From Python, this will be seen as `rustext.discovery`
//!
//! # Classes visible from Python:
//! - [`PartialDiscover`] is the Rust implementation of
//! `mercurial.setdiscovery.partialdiscovery`.
use crate::{
cindex::Index, conversion::rev_pyiter_collect, exceptions::GraphError,
};
use cpython::{
ObjectProtocol, PyDict, PyModule, PyObject, PyResult, PyTuple, Python,
PythonObject, ToPyObject,
};
use hg::discovery::PartialDiscovery as CorePartialDiscovery;
use hg::Revision;
use std::collections::HashSet;
use std::cell::RefCell;
use crate::revlog::pyindex_to_graph;
py_class!(pub class PartialDiscovery |py| {
data inner: RefCell<Box<CorePartialDiscovery<Index>>>;
// `_respectsize` is currently only here to replicate the Python API and
// will be used in future patches inside methods that are yet to be
// implemented.
def __new__(
_cls,
repo: PyObject,
targetheads: PyObject,
respectsize: bool,
randomize: bool = true
) -> PyResult<PartialDiscovery> {
let index = repo.getattr(py, "changelog")?.getattr(py, "index")?;
Self::create_instance(
py,
RefCell::new(Box::new(CorePartialDiscovery::new(
pyindex_to_graph(py, index)?,
rev_pyiter_collect(py, &targetheads)?,
respectsize,
randomize,
)))
)
}
def addcommons(&self, commons: PyObject) -> PyResult<PyObject> {
let mut inner = self.inner(py).borrow_mut();
let commons_vec: Vec<Revision> = rev_pyiter_collect(py, &commons)?;
inner.add_common_revisions(commons_vec)
.map_err(|e| GraphError::pynew(py, e))?;
Ok(py.None())
}
def addmissings(&self, missings: PyObject) -> PyResult<PyObject> {
let mut inner = self.inner(py).borrow_mut();
let missings_vec: Vec<Revision> = rev_pyiter_collect(py, &missings)?;
inner.add_missing_revisions(missings_vec)
.map_err(|e| GraphError::pynew(py, e))?;
Ok(py.None())
}
def addinfo(&self, sample: PyObject) -> PyResult<PyObject> {
let mut missing: Vec<Revision> = Vec::new();
let mut common: Vec<Revision> = Vec::new();
for info in sample.iter(py)? { // info is a pair (Revision, bool)
let mut revknown = info?.iter(py)?;
let rev: Revision = revknown.next().unwrap()?.extract(py)?;
let known: bool = revknown.next().unwrap()?.extract(py)?;
if known {
common.push(rev);
} else {
missing.push(rev);
}
}
let mut inner = self.inner(py).borrow_mut();
inner.add_common_revisions(common)
.map_err(|e| GraphError::pynew(py, e))?;
inner.add_missing_revisions(missing)
.map_err(|e| GraphError::pynew(py, e))?;
Ok(py.None())
}
def hasinfo(&self) -> PyResult<bool> {
Ok(self.inner(py).borrow().has_info())
}
def iscomplete(&self) -> PyResult<bool> {
Ok(self.inner(py).borrow().is_complete())
}
def stats(&self) -> PyResult<PyDict> {
let stats = self.inner(py).borrow().stats();
let as_dict: PyDict = PyDict::new(py);
as_dict.set_item(py, "undecided",
stats.undecided.map(
|l| l.to_py_object(py).into_object())
.unwrap_or_else(|| py.None()))?;
Ok(as_dict)
}
def commonheads(&self) -> PyResult<HashSet<Revision>> {
self.inner(py).borrow().common_heads()
.map_err(|e| GraphError::pynew(py, e))
}
def takefullsample(&self, _headrevs: PyObject,
size: usize) -> PyResult<PyObject> {
let mut inner = self.inner(py).borrow_mut();
let sample = inner.take_full_sample(size)
.map_err(|e| GraphError::pynew(py, e))?;
let as_vec: Vec<PyObject> = sample
.iter()
.map(|rev| rev.to_py_object(py).into_object())
.collect();
Ok(PyTuple::new(py, as_vec.as_slice()).into_object())
}
def takequicksample(&self, headrevs: PyObject,
size: usize) -> PyResult<PyObject> {
let mut inner = self.inner(py).borrow_mut();
let revsvec: Vec<Revision> = rev_pyiter_collect(py, &headrevs)?;
let sample = inner.take_quick_sample(revsvec, size)
.map_err(|e| GraphError::pynew(py, e))?;
let as_vec: Vec<PyObject> = sample
.iter()
.map(|rev| rev.to_py_object(py).into_object())
.collect();
Ok(PyTuple::new(py, as_vec.as_slice()).into_object())
}
});
/// Create the module, with __package__ given from parent
pub fn init_module(py: Python, package: &str) -> PyResult<PyModule> {
let dotted_name = &format!("{}.discovery", package);
let m = PyModule::new(py, dotted_name)?;
m.add(py, "__package__", package)?;
m.add(
py,
"__doc__",
"Discovery of common node sets - Rust implementation",
)?;
m.add_class::<PartialDiscovery>(py)?;
let sys = PyModule::import(py, "sys")?;
let sys_modules: PyDict = sys.get(py, "modules")?.extract(py)?;
sys_modules.set_item(py, dotted_name, &m)?;
// Example C code (see pyexpat.c and import.c) will "give away the
// reference", but we won't because it will be consumed once the
// Rust PyObject is dropped.
Ok(m)
}